Logic and the Methodology of Science
 November 2003 Preliminary Exam

August 23, 2005

1. Let \mathcal{L} be a first-order language. We say that the \mathcal{L}-structure \mathfrak{M} is pseudofinite if for every \mathcal{L}-sentence ϕ if $\mathfrak{M} \vDash \phi$, then there is a finite \mathcal{L}-structure \mathfrak{N} with $\mathfrak{N}=\phi$.

Show that if \mathfrak{M} is pseudofinite and $f: M \rightarrow M$ is an \mathcal{L}_{M}-definable function from the universe of \mathfrak{M} back to itself and f is surjective, then f is bijective. [NB: f may be defined with parameters from M.]
2.
(a) Show that there is a Δ_{2}^{0} total function $f: \omega \rightarrow \omega$ such that whenever g is a partial recursive function on ω, then $\exists n \forall m \geq n(m \in \operatorname{dom}(g) \rightarrow g(m) \leq$ $f(m)$).
(b) Show that if f is as in part (a), then every r.e. set is recursive in f.
3. Let \mathcal{L} be the first order language having one n-ary relation symbol R_{X} for each natural number n and set $X \subseteq \omega^{n}$, and no other nonlogical symbols. Let \mathfrak{A} be the \mathcal{L} structure with universe ω such that $R_{X}^{\mathfrak{L}}=X$ for all X.
(a) Show that if \mathfrak{B} is a reduct of \mathfrak{A} to a countable sublanguage of \mathcal{L} containing $R_{<}$, then the theory of \mathfrak{B} is not ω-categorical. (Here $<$ is the usual order on ω.)
(b) Show that the theory of \mathfrak{A} itself is ω-categorical.
4.
(a) Outline a proof that the theory of rings is not decidable.
(b) Show that the set \mathcal{V} of all valid formulae in the language of rings is not recursive.
5. Let T be axiomatizable; that is, let T be an r.e. theory in a recursive language \mathcal{L}. In the language of Peano arithmetic (PA), let φ be a sentence which naturally expresses that T has a finite model. Suppose PA $\cup\{\varphi\}$ is consistent. Show that T has a model.

6.

(a) Show that there is no r.e. set $A \subseteq \omega^{2}$ such that $\left\{A_{n} \mid n \in \omega\right\}=\{B \subseteq \omega \mid$ B is infinite and recursive $\}$. (Here $A_{n}=\{m \mid(n, m) \in A\}$.)
(b) Show that there is a r.e. set $A \subseteq \omega^{2}$ such that $\left\{A_{n} \mid n \in \omega\right\}=\{B \subseteq \omega \mid$ B is recursive $\}$.
7.
(a) Let $f: \omega \times \omega \rightarrow \omega$ be total and recursive. Show that there is a total recursive $g: \omega \rightarrow \omega$ such that

$$
W_{g(n)}=W_{f(n, g(n))}
$$

for all $n \in \omega$. (Here W_{e} is the $e^{\text {th }}$ r.e. set in some standard enumeration.)
(b) Let $A=\left\{W_{e} \mid\{e\}=W_{e}\right\}$. Show that for all r.e. sets B, C there is a total recursive function f such that for all $n \in \omega, n \in(B \backslash C)$ iff $f(n) \in A$.
8. Let \mathcal{L} be a countable language with no function or constant symbols. Recall that a sentence is universal if it is of the form $\left(\forall x_{1}\right) \cdots\left(\forall x_{n}\right) \theta(\vec{x})$ where θ is quantifier-free. Recall also that a sequence $\left\langle a_{i} \mid i \in \omega\right\rangle$ of elements of $M=|\mathfrak{M}|$ is indiscernible for \mathfrak{M} if for any natural number n, any \mathcal{L}-formula $\psi\left(x_{1}, \ldots, x_{n}\right)$, and pair of increasing n-tuples $i_{1}<\cdots<i_{n}$ and $j_{1}<\cdots<j_{n}$ of natural numbers, we have $\mathfrak{M} \models \psi\left[a_{i_{1}}, \ldots, a_{i_{n}}\right]$ iff $\mathfrak{M} \models \psi\left[a_{j_{1}}, \ldots, a_{j_{n}}\right]$.
(a) Show that if φ is a universal sentence of \mathcal{L} and φ has an infinite model, then φ has a model \mathfrak{M} such that $|\mathfrak{M}|=\left\{a_{n} \mid n<\omega\right\}$, for some sequence $\left\langle a_{n} \mid n<\omega\right\rangle$ which is indiscernible for \mathfrak{M}.
(b) Show that if \mathcal{L} is recursive, then

$$
\{\varphi \mid \varphi \text { is a universal sentence which has an infinite model }\}
$$

is recursive.
9. Let \mathcal{L} be a countable language having a unary predicate symbol P, and possibly other nonlogical symbols. Let \mathfrak{A} and \mathfrak{B} be countable, ω-homogeneous \mathcal{L}-structures which realize the same types. Suppose that $\mathfrak{A} \prec \mathfrak{B}$, that $\mathfrak{A} \neq \mathfrak{B}$, and that $P^{\mathfrak{A}}=P^{\mathfrak{B}}$. Show that there is a \mathfrak{C} such that $\mathfrak{B} \prec \mathfrak{C}$ and $P^{\mathfrak{C}}=P^{\mathfrak{B}}$, and the universe of \mathfrak{C} has cardinality ω_{1}.
[Recall that a structure \mathfrak{A} is ω-homogeneous iff whenever $n<\omega$ and $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n} \in$ $|\mathfrak{A}|$ and

$$
\left(\mathfrak{A}, a_{1}, \ldots, a_{n}\right) \equiv\left(\mathfrak{A}, b_{1}, \ldots, b_{n}\right)
$$

then there is an automorphism π of \mathfrak{A} such that $\pi\left(a_{i}\right)=b_{i}$ for all $i \leq n$.]

