LOGIC AND THE METHODOLOGY OF SCIENCE PRELIMINARY EXAMINATION

1. Prove or disprove: For any uncountable well-ordered set $(X,<)$ there is a countable well-ordered set $(Y,<)$ for which $(X,<) \equiv(Y,<)$.
2. Suppose that \mathcal{L} is a first-order language having only finitely many nonlogical symbols and that T is a theory in \mathcal{L} having no uncountable models. Show that up to isomorphism T has only finitely many models.
3. Show that there is some $e \in \omega$ for which $(\forall x \in \omega) x \in W_{e} \leftrightarrow(x+e+1) \in W_{e}$. Show, moreover, that any such W_{e} is recursive.
4. Let \mathfrak{N} be a nonstandard model of Peano arithmetic. Show that there is an element $a \in \mathfrak{N}$ such that for any standard prime number p, p^{p} divides a and a / p^{p} is coprime to p.
5. Show that there is a total recursive function $f: \omega \rightarrow \omega$ such that for all $e \in \omega$ the set W_{e} is finite if and only if $\omega \backslash W_{f(e)}$ is finite.
6. Consider the structure (ω, S) where $S: \omega \rightarrow \omega$ is the successor function $x \mapsto$ $x+1$. Let $T:=\operatorname{Th}(\omega, S)$ be the complete theory of this structure. How many 3 -types (over \varnothing) are there relative to T ? Describe all of the 3-types giving isolating formulas where possible.
7. Let $\operatorname{Pr}_{\mathrm{PA}}(x)$ be the usual formula which naturally expresses that the sentence encoded by x is provable from Peano arithmetic. Let $\phi(x)$ be a formula in the language of arithmetic in the one free variable x. Let $\operatorname{Sub}_{\phi}$ be the definable (relative to Peano arithmetic) function which takes a number a and returns the code for the sentence obtained by substituting a for x in ϕ. Show that if $\mathrm{PA} \vdash(\forall z)\left(\operatorname{Pr}_{\mathrm{PA}}\left(\operatorname{Sub}_{\phi}(z)\right) \rightarrow \phi(z)\right)$, then $\mathrm{PA} \vdash(\forall z) \phi(z)$.
8. Let \mathcal{L} be a first order language and \mathfrak{A} and \mathcal{L}-structure with universe A. Let \mathcal{L}^{\prime} be obtained from \mathcal{L} by adjoining one new one place relation symbol \mathbb{S}. We say that $S \subseteq A$ is implicitly definable if there is an \mathcal{L}^{\prime} sentence σ for which $\left(\mathfrak{A}, S^{\prime}\right) \models \sigma \Leftrightarrow$ $S=S^{\prime}$.

Is it the case that whenever a set S is implicitly definable in some \mathcal{L}-structure, then it must be explicitly (ie in \mathcal{L}) definable? Prove that your answer is correct.
9. Show that there is a nonstandard model \mathfrak{N} of Peano arithmetic having no proper elementary submodels.

[^0]
[^0]: Date: 25 May 2006.

