LOGIC AND THE METHODOLOGY OF SCIENCE PRELIMINARY EXAMINATION

1. Prove or disprove: For any uncountable well-ordered set (X, <) there is a countable well-ordered set (Y, <) for which $(X, <) \equiv (Y, <)$.

2. Suppose that \mathcal{L} is a first-order language having only finitely many nonlogical symbols and that T is a theory in \mathcal{L} having no uncountable models. Show that up to isomorphism T has only finitely many models.

3. Show that there is some $e \in \omega$ for which $(\forall x \in \omega) x \in W_e \leftrightarrow (x + e + 1) \in W_e$. Show, moreover, that any such W_e is recursive.

4. Let \mathfrak{N} be a nonstandard model of Peano arithmetic. Show that there is an element $a \in \mathfrak{N}$ such that for any standard prime number p, p^p divides a and a/p^p is coprime to p.

5. Show that there is a total recursive function $f : \omega \to \omega$ such that for all $e \in \omega$ the set W_e is finite if and only if $\omega \setminus W_{f(e)}$ is finite.

6. Consider the structure (ω, S) where $S : \omega \to \omega$ is the successor function $x \mapsto x + 1$. Let $T := \text{Th}(\omega, S)$ be the complete theory of this structure. How many 3-types (over \emptyset) are there relative to T? Describe all of the 3-types giving isolating formulas where possible.

7. Let $\Pr_{PA}(x)$ be the usual formula which naturally expresses that the sentence encoded by x is provable from Peano arithmetic. Let $\phi(x)$ be a formula in the language of arithmetic in the one free variable x. Let $\operatorname{Sub}_{\phi}$ be the definable (relative to Peano arithmetic) function which takes a number a and returns the code for the sentence obtained by substituting a for x in ϕ . Show that if $\operatorname{PA} \vdash (\forall z)(\operatorname{Pr}_{PA}(\operatorname{Sub}_{\phi}(z)) \rightarrow \phi(z))$, then $\operatorname{PA} \vdash (\forall z)\phi(z)$.

8. Let \mathcal{L} be a first order language and \mathfrak{A} and \mathcal{L} -structure with universe A. Let \mathcal{L}' be obtained from \mathcal{L} by adjoining one new one place relation symbol \mathbb{S} . We say that $S \subseteq A$ is *implicitly definable* if there is an \mathcal{L}' sentence σ for which $(\mathfrak{A}, S') \models \sigma \Leftrightarrow S = S'$.

Is it the case that whenever a set S is implicitly definable in some \mathcal{L} -structure, then it must be explicitly (*ie* in \mathcal{L}) definable? Prove that your answer is correct.

9. Show that there is a nonstandard model \mathfrak{N} of Peano arithmetic having no proper elementary submodels.

Date: 25 May 2006.