GROUP IN LOGIC AND THE METHODOLOGY OF SCIENCE PRELIMINARY EXAMINATION

There are eight questions. Partial credit may be assigned for substantially correct partially worked solutions. To pass, you need a score of roughly fifty percent, though the ultimate decision about the passing mark will be decided by the committee of graders.

- **1.** Prove or refute:
 - (a) If A and B are disjoint Σ_1^0 subsets of ω , then there is a Δ_1^0 set C such that $A \subseteq C$ and C is disjoint from B.
 - (b) If A and B are disjoint Π_2^0 subsets of ω , then there is a Δ_2^0 set C such that $A \subseteq C$ and C is disjoint from B.

2. Let *T* be a decidable theory in a finite language, and suppose all models of *T* are infinite. Show *T* has a model \mathfrak{A} with universe ω such that the satisfaction relation $\{(\phi, \vec{n}) | \mathfrak{A} \models \phi[\vec{n}]\}$ is recursive.

3. Show that there is a model $\mathfrak{N} \models \mathrm{PA}$ of Peano arithmetic and $a \in |\mathfrak{N}| \setminus \mathbb{N}$ a nonstandard element of the universe of \mathfrak{N} which is definable.

4. Let \mathfrak{A} be an \mathcal{L} -structure and two elements a and b of the universe of \mathfrak{A} . Show that the following are equivalent.

- (a) There is a definable function f for which f(a) = b.
- (b) For any elementary extension $\mathfrak{B} \succeq \mathfrak{A}$ and automorphism $\sigma : \mathfrak{B} \to \mathfrak{B}$, if $\sigma(a) = a$, then $\sigma(b) = b$.

5. Let $\mathcal{L} = \mathcal{L}(U, V)$ be the first-order language having exactly two unary predicate symbols, U and V, and no other nonlogical symbols. Describe all the of the complete theories in \mathcal{L} . You should show that the theories you propose are distinct and that they exhaust all of the completions.

6. Let $\{W_e\}_{e \in \omega}$ be the usual enumeration of the recursively enumerable sets. Show that Fin := $\{e \in \omega : W_e \text{ is finite }\}$ is Σ_2^0 -complete.

7. let $\mathfrak{A} = (U, I, f, g, ...)$ be a structure for a finite language \mathcal{L} , where I is a unary relation and f and g are binary functions. Let π be an isomorphism from $(\mathbb{N}, +, \times)$ to $(I, f \upharpoonright I, g \upharpoonright I)$. For ϕ an \mathcal{L} -sentence, let $\mathsf{GN}(\phi)$ be the Gödel number of ϕ in some reasonable Gödel numbering.

Show that $\{\pi(\mathsf{GN}(\phi)) | \phi \text{ is an } \mathcal{L}\text{-sentence and } \mathfrak{A} \models \phi\}$ is not definable over \mathfrak{A} without parameters.

8. Give an example of a pair of first order languages $\mathcal{L} \subseteq \mathcal{L}'$ and complete theories $T \subseteq T'$ in \mathcal{L} and \mathcal{L}' , respectively, for which T' is \aleph_1 -categorical but T has more than one model of cardinality \aleph_1 . [Prove that your proposed example works.]

Date: 30 June 2008.