## LOGIC AND THE METHODOLOGY OF SCIENCE PRELIMINARY EXAMINATION

1. Let $\mathcal{L}=\mathcal{L}\left(F_{1}\right)$ be the first-order language having exactly one unary function symbol and no constant or relation symbols. Give examples of infinite $\mathcal{L}$-structures $\mathfrak{M}=\left(M, F_{1}^{\mathfrak{M}}\right)$ for each of the following properties (and prove that each of your proposed examples actually has the stated property).
(a) $\mathfrak{M}$ has no nontrivial automorphism.
(b) $\mathfrak{M}$ has a countably infinite set of automorphisms.
(c) $\mathfrak{M}$ has uncountably many automorphisms, but for each $a \in M$ there are only finitely many $b \in M$ for which there is an automorphism $\sigma$ of $\mathfrak{M}$ with $\sigma(a)=b$.
2. Let $\mathcal{L}=\mathcal{L}(R)$ be the first-order language with exactly one binary relation symbol and no constant or function symbols.
(a) Let $T$ be a consistent arithmetic $\mathcal{L}$-theory. Show that there is an arithmetic set $U \subseteq \omega$ and an arithmetic $S \subseteq \omega \times \omega$ for which $(U, S) \vDash T$.
(b) Let $S \subseteq \omega \times \omega$ be arithmetic. Show that $\operatorname{Th}(\omega, S)$ is recursive in $\mathbf{0}^{(\omega)}$.
3. Let $\mathcal{L}$ be a first-order language and $T$ a complete and consistent $\mathcal{L}$-theory.

We say that $T$ has a Vaughtian pair if there is an elementary extension $\mathfrak{M} \prec$ $\mathfrak{N} \models T$ of models of $T$ and some formula $\varphi\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{L}_{M}$ in the free variables $\left(x_{1}, \ldots, x_{n}\right)$ possibly with parameters from $M$ for which $\left\{\boldsymbol{a} \in M^{n}: \mathfrak{M} \mid=\varphi(\boldsymbol{a})\right\}=$ : $\varphi(\mathfrak{M})$ is infinite but $\varphi(\mathfrak{M})=\varphi(\mathfrak{N})$ while $\mathfrak{M} \neq \mathfrak{N}$.

Show that if $T$ has no Vaughtian pairs, then for every formula $\varphi\left(x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y_{m}\right)$ there is a natural number $N=N_{\varphi}$ so that for any model $\mathfrak{M} \vDash T$ and any choice of parameters $\boldsymbol{b} \in M^{m}$, if $\varphi(\mathfrak{M} ; \boldsymbol{b})$ is finite, then $|\varphi(\mathfrak{M} ; \boldsymbol{b})| \leq N$.
4.
(a) Show that there is a total $\Delta_{2}^{0}$ function $f: \omega \rightarrow \omega$ for which for every recursive function $g: \omega \rightarrow \omega$ there is a number $m \in \omega$ such that for all $n>m$ we have $f(n)>g(n)$.
(b) Show that any such function has Turing degree greater than or equal to $\mathbf{0}^{\prime}$.
5. Suppose that $\mathfrak{M}$ is a countably infinite model of a countable $\aleph_{0}$-categorical theory. Must $\mathfrak{M}$ have a nontrivial automorphism? (Prove your answer.) [Bonus: What happens for uncountable theories? Again, prove your answer.]

[^0]6. Let $\mathcal{L}_{1} \subseteq \mathcal{L}_{2}$ be an extension of first-order languages. Let $\mathfrak{M}$ be an infinite $\mathcal{L}_{2}$-structure and let $\mathfrak{N}:=\left(\mathfrak{M} \upharpoonright \mathcal{L}_{1}\right)$ be the reduct of $\mathfrak{M}$ to $\mathcal{L}_{1}$. Let $T_{2}:=\operatorname{Th}_{\mathcal{L}_{2}}(\mathfrak{M})$ be the theory of $\mathfrak{M}$ in $\mathcal{L}_{2}$ and $T_{1}:=\operatorname{Th}_{\mathcal{L}_{1}}(\mathfrak{N})$ be the theory of $\mathfrak{N}$ in $\mathcal{L}_{1}$.
(a) Prove or disprove: If $T_{2}$ is $\aleph_{0}$-categorical, then $T_{1}$ is $\aleph_{0}$-categorical.
(b) Prove or disprove: If $T_{2}$ is $\aleph_{1}$-categorical, then $T_{1}$ is $\aleph_{1}$-categorical.
7. In what follows, the word "formula" means "formula in $\mathcal{L}(+, \times, 0,1,<)$, the language of ordered rings." In particular, a formula has no constant symbols other than 0 and 1.
(a) Let $\mathfrak{N} \models$ PA be a nonstandard model of Peano Arithmetic. Show that there is an element $a \in N$ such that for every quantifier free formula $\phi(x)$ if $\mathfrak{N} \models(\exists x) \phi(x)$, then $\mathfrak{N} \models(\exists x)[x<a \& \phi(x)]$.
(b) Show that if $T$ is a consistent extension of PA for which $(\mathbb{N},+, \times) \not \vDash T$, then there exists a model $\mathfrak{N}=T$ for which there is no $a \in N$ such that for all formulas $\phi(x)$ we have $\mathfrak{N} \models(\exists x) \phi(x) \Longleftrightarrow \mathfrak{N} \vDash(\exists x)[x<a \& \phi(x)]$.
8. Let $\mathcal{L}=\mathcal{L}(F)$ be the first-order language with a single unary function symbol $F$ and no constant or relation symbols. Let $\mathfrak{M}$ be the $\mathcal{L}$-structure having universe $\{0,1,2,3,4\}$ and $F^{\mathfrak{M}}(0):=1, F^{\mathfrak{M}}(1):=2, F^{\mathfrak{M}}(2):=0, F^{\mathfrak{M}}(3)=4$ and $F^{\mathfrak{M}}(4)=3$.
(a) Which subsets of $M$ are $\mathcal{L}$-definable without parameters?
(b) Which subsets of $M$ are $\mathcal{L}$-definable with the parameter 0 ?
9. $W_{e}$ is the $e^{\text {th }}$ recursively enumerable set under the standard enumeration. Let $A:=\left\{e \in \omega:\left(\omega \backslash W_{e}\right)\right.$ contains an infinite r.e. set $\}$ and $B:=\{e \in \omega:(\omega \backslash$ $W_{e}$ ) is finite $\}$.
(a) Let $C$ be a $\Pi_{2}^{0}$ set. Show that there is a total recursive function $f$ such that for all $c$, if $c \in C$, then $f(c) \in A$ and if $c \notin C$, then $f(c) \in B$.
(b) Show that $A$ is $\Sigma_{3}^{0}$ complete.


[^0]:    Date: 15 June 2007.

