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1. Let L be a finite first-order language whose formulae have been Godel num-
bered in some natural way. Let Sat be the set of all (Godel numbers of) satis-
fiable L-formulae.

(a) Show that Sat is Π0
1.

(b) Give an example of a finite L for which Sat is not recursive. Outline a
proof that your example works.

2. Recall that a sentence is universal if it is of the form (∀x1) · · · (∀xn)θ(~x)
where θ is quantifier-free. We say that T is universal if there is a set U of
universal L-sentences for which T `a U . Show that T is universal if and only if
for any model M |= T and any substructure N ⊆ M one has N |= T .

3. Let 〈We | e < ω〉 be a standard enumeration of the recursively enumerable
sets. Show that {e |We is finite } is Σ0

2-complete.

4. Let L be a first-order language and M an L-structure. Recall that a sequence
〈ai | i ∈ ω〉 of elements of M = |M| is indiscernible for M if for any natural
number n, any L-formula ψ(x1, . . . , xn), and pair of increasing n-tuples i1 <
· · · < in and j1 < · · · < jn of natural numbers, we have M |= ψ[ai1 , . . . , ain

]
iff M |= ψ[aj1 , . . . , ajn

]. Show that if M is infinite, there is some elementary
extension N � M and an indiscernible sequence 〈ai | i ∈ ω〉 for N with a0 6= a1.

Show by example that the elementary extension may be necessary.

5. For A ⊆ ω×ω let Aa = {b | 〈a, b〉 ∈ A}.

(a) Let A be recursively enumerable (r.e.), and suppose n < ω is such that
Aa has size n for all a. Show that A is recursive.

(b) For each n > m, give an example of an r.e. set A such that for all a, Aa

has size n or size m, but A is not recursive.

6. Let L be a first-order language and M an L-structure.
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a Suppose that there are only finitely many orbits in M = |M| under the
automorphism group of M. (Such an orbit is an equivalence class of the
equivalence relation: xEy iff there is an automorphism π of M such that
π(x) = y.) Show that there are finitely many formulas ψ1(x), . . . , ψn(x)
in one free variable x such that for any L-formula ϑ(x) in one free variable
there is some i ≤ n with M |= (∀x) ϑ(x) ↔ ψi(x).

b Is the converse true? Prove or provide (with proof) a counter-example.

c Assume that L and M are both countable and for each natural number m
there is a finite sequence φm

1 (x1, . . . , xm), . . . , φm
nm

(x1, . . . , xm) of formulas
in m free variables such that for any other formula θ(x1, . . . , xm) there is
some i ≤ nm with M |= (∀x1, . . . , xm) θ(~x) ↔ φm

i (~x).

Show that there are only finitely many orbits in M under the action of
the automorphism group of M.

7. Let N = (ω,+, ·, S,<, 0) be the standard structure of arithmetic. Let N ≺
M, and N 6= M. Let M be the universe of M. Suppose

(∀x ∈M)(∃y ∈ ω)(∀z ∈M)(∃t ∈ ω)M |= φ[x, y, z, t].

Show that for some m < ω,

(∀x ∈M((∃y < m)(∀z ∈M)(∃t < m)M |= φ[x, y, z, t].

8. Let Φ = {φe | e ∈ ω} be the set of all partial recursive functions of one
variable, equipped with some standard enumeration. Let F : Ψ → ω, where
Ψ ⊆ Φ, and let f be a partial recursive function such that

dom(f) = {e | φe ∈ Ψ},

and for all e ∈ dom(f),
f(e) = F (φe).

(a) Show that if Ψ = Φ (so that f is total), then F is a constant function.

(b) (Harder.) Show that in any case, there is an r.e. collection H of finite
partial functions such that

Ψ = {φ ∈ Φ | ∃h ∈ H(h ⊆ φ)}.

9. Recall that a formula φ(x, y) in the language of PA represents a relation
R ⊆ ω × ω iff for all n,m ∈ ω,

R(n,m) ⇒ PA ` φ(n̄, m̄)
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and
¬R(n,m) ⇒ PA ` ¬φ(n̄, m̄),

where k̄ is the numeral for k. Let Prov(x, y) be a standard formula in the
language of Peano Arithmetic (PA) representing the relation y is (the Godel
number of) a proof of x from the axioms of PA. Similarly, let neg(x, y) be a
standard formula representing: x and y are sentences, and one is the negation
of the other. Let Prov∗(x, y) be the formula

Prov(x, y) ∧ ∀z < y∀w(neg(x,w) → ¬Prov(w, z)).

(a) Show that Prov∗(x, y) represents over PA the same relation as does Prov(x, y).

(b) Let Con∗ be the sentence

∀x∀w∀y∀z[((Prov∗(x, y) ∧ Prov∗(w, z)) → ¬neg(x,w)].

Show that PA proves Con∗.

(c) Explain where Godel’s proof of the second incompleteness theorem breaks
down, when applied to Con∗.
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