Logic and the Methodology of Science June 2003 Preliminary Exam

August 23, 2005

1. Let \mathcal{L} be a finite first-order language whose formulae have been Godel numbered in some natural way. Let Sat be the set of all (Godel numbers of) satisfiable \mathcal{L}-formulae.
(a) Show that Sat is Π_{1}^{0}.
(b) Give an example of a finite \mathcal{L} for which Sat is not recursive. Outline a proof that your example works.
2. Recall that a sentence is universal if it is of the form $\left(\forall x_{1}\right) \cdots\left(\forall x_{n}\right) \theta(\vec{x})$ where θ is quantifier-free. We say that T is universal if there is a set U of universal \mathcal{L}-sentences for which $T \vdash \dashv U$. Show that T is universal if and only if for any model $\mathfrak{M} \vDash T$ and any substructure $\mathfrak{N} \subseteq \mathfrak{M}$ one has $\mathfrak{N} \vDash T$.
3. Let $\left\langle W_{e} \mid e<\omega\right\rangle$ be a standard enumeration of the recursively enumerable sets. Show that $\left\{e \mid W_{e}\right.$ is finite $\}$ is Σ_{2}^{0}-complete.
4. Let \mathcal{L} be a first-order language and \mathfrak{M} an \mathcal{L}-structure. Recall that a sequence $\left\langle a_{i} \mid i \in \omega\right\rangle$ of elements of $M=|\mathfrak{M}|$ is indiscernible for \mathfrak{M} if for any natural number n, any \mathcal{L}-formula $\psi\left(x_{1}, \ldots, x_{n}\right)$, and pair of increasing n-tuples $i_{1}<$ $\cdots<i_{n}$ and $j_{1}<\cdots<j_{n}$ of natural numbers, we have $\mathfrak{M} \vDash \psi\left[a_{i_{1}}, \ldots, a_{i_{n}}\right]$ iff $\mathfrak{M} \equiv \psi\left[a_{j_{1}}, \ldots, a_{j_{n}}\right]$. Show that if \mathfrak{M} is infinite, there is some elementary extension $\mathfrak{N} \succeq \mathfrak{M}$ and an indiscernible sequence $\left\langle a_{i} \mid i \in \omega\right\rangle$ for \mathfrak{N} with $a_{0} \neq a_{1}$.

Show by example that the elementary extension may be necessary.
5. For $A \subseteq \omega \times \omega$ let $A_{a}=\{b \mid\langle a, b\rangle \in A\}$.
(a) Let A be recursively enumerable (r.e.), and suppose $n<\omega$ is such that A_{a} has size n for all a. Show that A is recursive.
(b) For each $n>m$, give an example of an r.e. set A such that for all a, A_{a} has size n or size m, but A is not recursive.
6. Let \mathcal{L} be a first-order language and \mathfrak{M} an \mathcal{L}-structure.
a Suppose that there are only finitely many orbits in $M=|\mathfrak{M}|$ under the automorphism group of \mathfrak{M}. (Such an orbit is an equivalence class of the equivalence relation: $x E y$ iff there is an automorphism π of \mathfrak{M} such that $\pi(x)=y$.) Show that there are finitely many formulas $\psi_{1}(x), \ldots, \psi_{n}(x)$ in one free variable x such that for any \mathcal{L}-formula $\vartheta(x)$ in one free variable there is some $i \leq n$ with $\mathfrak{M} \vDash(\forall x) \vartheta(x) \leftrightarrow \psi_{i}(x)$.
b Is the converse true? Prove or provide (with proof) a counter-example.
c Assume that \mathcal{L} and \mathfrak{M} are both countable and for each natural number m there is a finite sequence $\phi_{1}^{m}\left(x_{1}, \ldots, x_{m}\right), \ldots, \phi_{n_{m}}^{m}\left(x_{1}, \ldots, x_{m}\right)$ of formulas in m free variables such that for any other formula $\theta\left(x_{1}, \ldots, x_{m}\right)$ there is some $i \leq n_{m}$ with $\mathfrak{M} \vDash\left(\forall x_{1}, \ldots, x_{m}\right) \theta(\vec{x}) \leftrightarrow \phi_{i}^{m}(\vec{x})$.
Show that there are only finitely many orbits in M under the action of the automorphism group of \mathfrak{M}.
7. Let $\mathcal{N}=(\omega,+, \cdot, S,<, 0)$ be the standard structure of arithmetic. Let $\mathcal{N} \prec$ \mathcal{M}, and $\mathcal{N} \neq \mathcal{M}$. Let M be the universe of \mathcal{M}. Suppose

$$
(\forall x \in M)(\exists y \in \omega)(\forall z \in M)(\exists t \in \omega) \mathcal{M} \vDash \phi[x, y, z, t] .
$$

Show that for some $m<\omega$,

$$
(\forall x \in M((\exists y<m)(\forall z \in M)(\exists t<m) \mathcal{M} \models \phi[x, y, z, t] .
$$

8. Let $\Phi=\left\{\phi_{e} \mid e \in \omega\right\}$ be the set of all partial recursive functions of one variable, equipped with some standard enumeration. Let $F: \Psi \rightarrow \omega$, where $\Psi \subseteq \Phi$, and let f be a partial recursive function such that

$$
\operatorname{dom}(f)=\left\{e \mid \phi_{e} \in \Psi\right\}
$$

and for all $e \in \operatorname{dom}(f)$,

$$
f(e)=F\left(\phi_{e}\right) .
$$

(a) Show that if $\Psi=\Phi$ (so that f is total), then F is a constant function.
(b) (Harder.) Show that in any case, there is an r.e. collection \mathcal{H} of finite partial functions such that

$$
\Psi=\{\phi \in \Phi \mid \exists h \in \mathcal{H}(h \subseteq \phi)\} .
$$

9. Recall that a formula $\phi(x, y)$ in the language of PA represents a relation $R \subseteq \omega \times \omega$ iff for all $n, m \in \omega$,

$$
R(n, m) \Rightarrow \mathrm{PA} \vdash \phi(\bar{n}, \bar{m})
$$

and

$$
\neg R(n, m) \Rightarrow \mathrm{PA} \vdash \neg \phi(\bar{n}, \bar{m}),
$$

where \bar{k} is the numeral for k. Let $\operatorname{Prov}(x, y)$ be a standard formula in the language of Peano Arithmetic (PA) representing the relation y is (the Godel number of) a proof of x from the axioms of PA. Similarly, let neg (x, y) be a standard formula representing: x and y are sentences, and one is the negation of the other. Let $\operatorname{Prov}^{*}(x, y)$ be the formula

$$
\operatorname{Prov}(x, y) \wedge \forall z<y \forall w(\operatorname{neg}(x, w) \rightarrow \neg \operatorname{Prov}(w, z)) .
$$

(a) Show that $\operatorname{Prov}^{*}(x, y)$ represents over PA the same relation as does $\operatorname{Prov}(x, y)$.
(b) Let Con* be the sentence

$$
\forall x \forall w \forall y \forall z\left[\left(\left(\operatorname{Prov}^{*}(x, y) \wedge \operatorname{Prov}^{*}(w, z)\right) \rightarrow \neg \operatorname{neg}(x, w)\right] .\right.
$$

Show that PA proves Con*.
(c) Explain where Godel's proof of the second incompleteness theorem breaks down, when applied to Con*.

