GROUP IN LOGIC AND THE METHODOLOGY OF SCIENCE PRELIMINARY EXAMINATION

There are eight questions. Partial credit may be assigned for substantially correct partially worked solutions. To pass, you need a score of roughly fifty percent, though the ultimate decision about the passing mark will be decided by the committee of graders.
1.
(a) Show there are disjoint Σ_{2}^{0} sets A and B of natural numbers such that there is no Δ_{2}^{0} set C with $A \subseteq C$ and $C \cap B=\emptyset$.
(b) Call a theory T in the language of PA Σ_{1}^{0}-sound just in case T proves no false existential sentences, i.e. whenever $T \vdash \exists v \theta$ where all quantifiers in θ are bounded, then $\exists v \theta$ is true in the standard model of PA. Show that there is no complete, Σ_{1}^{0}-sound T extending PA such that T is Δ_{2}^{0}.
2. Let \leq_{T} be Turing reducibility, and $K:=\left\{e \in \omega \mid e \in W_{e}\right\}$. Show that there is an A such that $\emptyset<_{T} A<_{T} K$.
3. Let T be the theory of $(\mathbb{Z},<)$.
(a) Show that T is finitely axiomatizable.
(b) Show that T has a prime model.
(c) Show that T has a countable saturated model.
4. Let $f: N \rightarrow N$ be total recursive. Show that there is a formula $\varphi(v)$ in the language of PA such that
(a) PA $\vdash \varphi(\bar{n})$ for each n, where \bar{n} is the numeral for n, and
(b) letting $g(n)$ be the least Gödel number of a proof of $\varphi(\bar{n})$ in PA, we have $f(n)<g(n)$ for all n.
5. An element a of some model M is definable if there is a formula $\phi(x)$ for which $M \models(\forall x)(\phi(x) \leftrightarrow x=a)$.
(a) Show that $a \in M$ is definable if and only if for every elementary extension $N \succeq M$ and every automorphism $\sigma: N \rightarrow N$ one has $\sigma(a)=a$.
(b) Show by example (with proof) that it may happen that a is not definable but for every automorphism $\sigma: M \rightarrow M$ one has $\sigma(a)=a$.
6. Let $E:=\left\{e \in \omega \mid W_{e}=\{x \in \omega:(\exists y \in \omega) y+y=x\}\right\}$. Compute the position of E within the arithmetic hierarchy.
7. Show that for any complete theory T having infinite models there is a model $M \models T$ and a descending chain of elementary submodels models $M_{\alpha} \models T$ (for $\alpha \in \omega+1$) so that $M=M_{0} \varsubsetneqq M_{1} \varsubsetneqq M_{2} \varsubsetneqq \cdots \varsubsetneqq$ $\bigcap_{n=0}^{\infty} M_{n}=M_{\omega}$ and $M \cong M_{\alpha}$ for all $\alpha \in \omega+1$.
8. Let L be a language having at least one constant symbol. Let T be a consistent L-theory which is axiomatized by universal sentences. Prove that the following two conditions on T are equivalent.

AP: T has the amalgamation property: For any three models $A \models T, B \models T$ and $C \models T$ with $A \subseteq B$ and $A \subseteq C$, there is a model $D \models T$ and embeddings $f: B \rightarrow D$ and $g: C \rightarrow D$ so that $f \upharpoonright A=g \upharpoonright A$.
QfI: T satisfies quantifier-free interpolation in the sense that for any three tuples of (disjoint) variables x, y, and z and quantifier-free formulae $\phi(x, y)$ and $\psi(y, z)$ if $T \vdash \phi(x, y) \rightarrow \psi(y, z)$, then there is a quantifier-free formula $\vartheta(y)$ so that $T \vdash \phi(x, y) \rightarrow \vartheta(y)$ and $T \vdash \vartheta(y) \rightarrow \psi(y, z)$.

