GROUP IN LOGIC AND THE METHODOLOGY OF SCIENCE PRELIMINARY EXAMINATION

There are eight questions. Partial credit may be assigned for substantially correct partially worked solutions. To pass, you need a score of roughly fifty percent, though the ultimate decision about the passing mark will be decided by the committee of graders.

1.

- (a) Show there are disjoint Σ_2^0 sets A and B of natural numbers such that there is no Δ_2^0 set C with $A \subseteq C$ and $C \cap B = \emptyset$.
- (b) Call a theory T in the language of PA Σ_1^0 -sound just in case T proves no false existential sentences, i.e. whenever $T \vdash \exists v\theta$ where all quantifiers in θ are bounded, then $\exists v\theta$ is true in the standard model of PA. Show that there is no complete, Σ_1^0 -sound T extending PA such that T is Δ_2^0 .

2. Let \leq_T be Turing reducibility, and $K := \{e \in \omega \mid e \in W_e\}$. Show that there is an A such that $\emptyset <_T A <_T K$.

- **3.** Let T be the theory of $(\mathbb{Z}, <)$.
 - (a) Show that T is finitely axiomatizable.
 - (b) Show that T has a prime model.
 - (c) Show that T has a countable saturated model.
- 4. Let $f: N \to N$ be total recursive. Show that there is a formula $\varphi(v)$ in the language of PA such that
 - (a) $\mathsf{PA} \vdash \varphi(\bar{n})$ for each *n*, where \bar{n} is the numeral for *n*, and
 - (b) letting g(n) be the least Gödel number of a proof of $\varphi(\bar{n})$ in PA, we have f(n) < g(n) for all n.
- **5.** An element a of some model M is definable if there is a formula $\phi(x)$ for which $M \models (\forall x)(\phi(x) \leftrightarrow x = a)$.
 - (a) Show that $a \in M$ is definable if and only if for every elementary extension $N \succeq M$ and every automorphism $\sigma: N \to N$ one has $\sigma(a) = a$.
 - (b) Show by example (with proof) that it may happen that a is not definable but for every automorphism $\sigma: M \to M$ one has $\sigma(a) = a$.

6. Let $E := \{e \in \omega \mid W_e = \{x \in \omega : (\exists y \in \omega) | y + y = x\}\}$. Compute the position of E within the arithmetic hierarchy.

7. Show that for any complete theory T having infinite models there is a model $M \models T$ and a descending chain of elementary submodels models $M_{\alpha} \models T$ (for $\alpha \in \omega + 1$) so that $M = M_0 \ngeq M_1 \gneqq M_2 \gneqq \cdots \gneqq$ $\bigcap_{n=0}^{\infty} M_n = M_{\omega}$ and $M \cong M_{\alpha}$ for all $\alpha \in \omega + 1$.

8. Let L be a language having at least one constant symbol. Let T be a consistent L-theory which is axiomatized by universal sentences. Prove that the following two conditions on T are equivalent.

- AP: T has the amalgamation property: For any three models $A \models T$, $B \models T$ and $C \models T$ with $A \subseteq B$ and $A \subseteq C$, there is a model $D \models T$ and embeddings $f : B \to D$ and $g : C \to D$ so that $f \upharpoonright A = g \upharpoonright A$.
- QfI: T satisfies quantifier-free interpolation in the sense that for any three tuples of (disjoint) variables x, y, and z and quantifier-free formulae $\phi(x, y)$ and $\psi(y, z)$ if $T \vdash \phi(x, y) \rightarrow \psi(y, z)$, then there is a quantifier-free formula $\vartheta(y)$ so that $T \vdash \phi(x, y) \rightarrow \vartheta(y)$ and $T \vdash \vartheta(y) \rightarrow \psi(y, z)$.

Date: 2 June 2013.