GROUP IN LOGIC AND THE METHODOLOGY OF SCIENCE PRELIMINARY EXAMINATION

There are nine questions. Partial credit may be assigned for substantially correct partially worked solutions. To pass, you need a score of roughly fifty percent, though the ultimate decision about the passing mark will be decided by the committee of graders.

1. Let A be an infinite r.e. set, and let R be an r.e. partial order of A. Suppose R is directed, that is, for all $a, b \in A$, there is c such that R(a, c) & R(b, c). Show that there is a total recursive function f such that $(\forall a \in A)(\exists n)R(a, f(n))$.

2. Show that for any infinite model M and cardinal κ there is some elementary extension $N \succeq M$ whose automorphism group has size at least κ . [Hint: Use Ehrenfeucht-Mostowski models.]

3. Let W_e be the *e*-th r.e. set in a standard enumeration. Put

$$R_e = \{ \langle a, b \rangle \in \omega^2 \mid 2^a 3^b \in W_e \} .$$

Show that the set

$$\mathsf{L} := \{ e \in \omega \mid R_e \text{ is a linear order of } \omega \}$$

is Π_2^0 -complete.

4. Let \mathcal{L} be a countable first-order language, T an \mathcal{L} -theory and $\mathcal{L}' := \mathcal{L}(\{P_i : i \in \omega\})$ an expansion of \mathcal{L} by countably many new predicate symbols. Suppose that $\Sigma(x)$ is a set of \mathcal{L} formulae and that for each $n \in \omega$ there is an $\mathcal{L}(\{P_i : i < n\})$ -structure \mathfrak{M}_n for which $\mathfrak{M}_n \models T$ but \mathfrak{M}_n omits $\Sigma(x)$. Show that there is an \mathcal{L} -structure $\mathfrak{M} \models T$ which omits $\Sigma(x)$.

5. Show that there is no partial recursive function ψ such that whenever W_e is finite, then $\psi(e)$ is defined, and $|W_e| \leq \psi(e)$.

6. Let $\mathcal{L} = \mathcal{L}(<)$ be the theory whose signature consist of a single binary relation symbol <. By "the theory of finite linearly ordered sets" we mean the theory

 $\mathsf{T}_{flo} := \{ \psi \in \mathcal{L} \mid (X, <) \models \psi \text{ for every (nonempty) finite linear order } (X, <) \}$

Show that T_{flo} is decidable.

7. Let $\mathfrak{N} \models \mathrm{PA}$ be a model of Peano Arithmetic and $a \in |\mathfrak{N}|$. Let $I = \{b \mid \mathfrak{N} \models b \leq a\}$, and let \leq^* be a linear order of I such that \leq^* is definable from parameters over \mathfrak{N} . Show that (I, \leq^*) is *not* isomorphic to (ω, \leq) .

8. Let T be a consistent, recursively axiomatizable theory. Show that T has a model \mathfrak{A} such that $\operatorname{Th}(\mathfrak{A})$ is Δ_2^0 .

- **9).** For T a recursively axiomatizable theory, let Con_T be a natural formalization of "T is consistent".
 - (a) Let T be a recursively axiomatizable theory in the language of PA, with PA $\subseteq T$. Suppose that $T \vdash \varphi$, where φ is a Π_1 sentence. Show that if T is consistent, then φ is true.
 - (b) Let φ be a Π_1 sentence such that $PA + \neg Con_{PA} \vdash \varphi$. Show that $PA \vdash \varphi$. [Hint: You may assume that the proof of the second incompleteness theorem for PA can be formalized in PA. Use this to show $PA + Con_{PA} \vdash \varphi$.]

Date: 8 June 2012.