GROUP IN LOGIC AND THE METHODOLOGY OF SCIENCE PRELIMINARY EXAMINATION

1. Suppose that $\psi(y)$ and $\phi(x, y)$ are two formulae in the language of arithmetic, $\mathcal{L}(+, \times, \leq, 0, 1)$, and that the partial type

$$\Sigma(x) := \operatorname{Th}(\mathbb{N}) \cup \{\phi(x, n) : \mathbb{N} \models \psi(n)\} \cup \{\neg \phi(x, n) : \mathbb{N} \models \neg \psi(y)\}$$

is consistent. **Prove** that if $*N \supseteq \mathbb{N}$ is a proper extension of the natural numbers and $*N \equiv \mathbb{N}$, then there is a $b \in *N$ for which $*N \models \Sigma(b)$.

2. Show that there is a function $f : \mathbb{N} \to \mathbb{N}$ such that every arithmetically definable set can be computed from any function g for which $(\forall n)[g(n) \ge f(n)]$.

3. Prove that $\operatorname{Th}(\mathbb{Z}, <)$ is decidable.

4. By a finitely branching rooted tree, we shall mean a set T given together with a partial ordering \leq for which

- there is an element $t_0 \in T$ such that $(\forall t \in T)[t_0 \leq t]$,
- for each $t \in T$ the initial set $\{s \in T : s \leq t\}$ is a finite set linearly ordered by the restriction of \leq , and
- for each $t \in T$ the set of immediate successors of t is finite.

By a *recursive* finitely branching rooted tree we shall me such a tree (T, \leq) for which T is the set N of natural numbers and \leq is recursive subset of \mathbb{N}^2 .

Prove that (1) if (T, \leq) is an infinite, finitely branching rooted tree, then there is an infinite subset $S \subseteq T$ which is linearly ordered by \leq , but (2) there is a recursive finitely branching rooted tree for which there is no infinite recursive set $S \subseteq T$ linearly ordered by \leq .

5. We say that the theory T eliminates the quantifier \exists^{∞} if for each formula $\phi(x; y) = \phi(x_1, \ldots, x_n; y_1, \ldots, y_m)$ there is a formula $\vartheta(y)$ so that for any model $M \models T$ we have $M \models \vartheta(b) \iff \{a \in M^n : M \models \phi(a; b)\}$ is infinite. Show:

- T eliminates \exists^{∞} if and only if for each formula $\phi(x; y) = \phi(x_1, \ldots, x_n; y_1, \ldots, y_m)$ there is a number $N = N(\phi)$ so that for any model $M \models T$ and parameter $b \in M^m$ the set $\{a \in M^n : M \models \phi(a; b)\}$ is finite, it has size at most N.
- If T is countable and T does not eliminate \exists^{∞} , then there is an uncountable model $M \models T$ and a countably infinite definable (with parameters) set $X \subseteq M$.

6. Prove that if $X \subseteq \mathbb{N}$ is an infinite recursively enumerable set, then there is a recursive function $f: X \to X$ so that f has no fixed points but $f \circ f = \operatorname{id}_X$.

7. Recall that a model M is universal if for every $N \equiv M$ with $|N| \leq |M|$ there is an elementary embedding $g: N \stackrel{\prec}{\hookrightarrow} M$. Give an example (with a proof that it is an example) of a universal model which is *not* saturated.

8. Does there exist a consistent, recursive extension T of PA for which $T \vdash \neg \operatorname{Con}(T)$? Justify your answer.

Date: 17 June 2010.