GROUP IN LOGIC AND THE METHODOLOGY OF SCIENCE PRELIMINARY EXAMINATION

1. Suppose that $\psi(y)$ and $\phi(x, y)$ are two formulae in the language of arithmetic, $\mathcal{L}(+, \times, \leq, 0,1)$, and that the partial type

$$
\Sigma(x):=\operatorname{Th}(\mathbb{N}) \cup\{\phi(x, n): \mathbb{N} \models \psi(n)\} \cup\{\neg \phi(x, n): \mathbb{N} \models \neg \psi(y)\}
$$

is consistent. Prove that if $* N \supsetneq \mathbb{N}$ is a proper extension of the natural numbers and ${ }^{*} N \equiv \mathbb{N}$, then there is a $b \in{ }^{*} N$ for which ${ }^{*} N \models \Sigma(b)$.
2. Show that there is a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that every arithmetically definable set can be computed from any function g for which $(\forall n)[g(n) \geq f(n)]$.
3. Prove that $\operatorname{Th}(\mathbb{Z},<)$ is decidable.
4. By a finitely branching rooted tree, we shall mean a set T given together with a partial ordering \leq for which

- there is an element $t_{0} \in T$ such that $(\forall t \in T)\left[t_{0} \leq t\right]$,
- for each $t \in T$ the initial set $\{s \in T: s \leq t\}$ is a finite set linearly ordered by the restriction of \leq, and
- for each $t \in T$ the set of immediate successors of t is finite.

By a recursive finitely branching rooted tree we shall me such a tree (T, \leq) for which T is the set \mathbb{N} of natural numbers and \leq is recursive subset of \mathbb{N}^{2}.

Prove that (1) if (T, \leq) is an infinite, finitely branching rooted tree, then there is an infinite subset $S \subseteq T$ which is linearly ordered by \leq, but (2) there is a recursive finitely branching rooted tree for which there is no infinite recursive set $S \subseteq T$ linearly ordered by \leq.
5. We say that the theory T eliminates the quantifier \exists^{∞} if for each formula $\phi(x ; y)=\phi\left(x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y_{m}\right)$ there is a formula $\vartheta(y)$ so that for any model $M \models T$ we have $M \models \vartheta(b) \Longleftrightarrow\left\{a \in M^{n}: M \models \phi(a ; b)\right\}$ is infinite. Show:

- T eliminates $\exists \infty$ if and only if for each formula $\phi(x ; y)=\phi\left(x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y_{m}\right)$ there is a number $N=N(\phi)$ so that for any model $M \models T$ and parameter $b \in M^{m}$ the set $\left\{a \in M^{n}: M \models \phi(a ; b)\right\}$ is finite, it has size at most N.
- If T is countable and T does not eliminate \exists^{∞}, then there is an uncountable model $M \models T$ and a countably infinite definable (with parameters) set $X \subseteq M$.

6. Prove that if $X \subseteq \mathbb{N}$ is an infinite recursively enumerable set, then there is a recursive function $f: X \rightarrow X$ so that f has no fixed points but $f \circ f=\mathrm{id}_{X}$.
7. Recall that a model M is universal if for every $N \equiv M$ with $|N| \leq|M|$ there is an elementary embedding $g: N \breve{\preceq} M$. Give an example (with a proof that it is an example) of a universal model which is not saturated.
8. Does there exist a consistent, recursive extension T of PA for which $T \vdash$ $\neg \operatorname{Con}(T)$? Justify your answer.
[^0]
[^0]: Date: 17 June 2010.

