Logic and the Methodology of Science February 2005 Preliminary Exam

August 23, 2005

1. Let $\varphi(v)$ be a formula in the laguage of Peano Arithmetic (PA).
(a) Suppose that $\varphi(v)$ is Σ_{1}, and $\mathrm{PA} \vdash \exists v \varphi(v)$. Show that $\mathrm{PA} \vdash \varphi(\bar{n})$ for some numeral \bar{n}.
(b) Give an example of a formula $\varphi(v)$ such that $\mathrm{PA} \vdash \exists v \varphi(v)$, but for all n, PA does not prove $\varphi(\bar{n})$.
(c) Suppose $\varphi(v)$ is Σ_{1} and T is a consistent extension of PA such that $T \vdash \exists v \varphi(v)$. Does it follow that $T \vdash \varphi(\bar{n})$ for some n.
2. Show there is a one-one 2 -ary partial recursive function Ψ such that for every one-one 1-ary partial recursive f, there is an e such that for all i $f(i)=\Psi(e, i)$.
3. Let L be a finite language, and let T be an axiomatizable L-theory. Fix a recursive enumeration of T, and let T_{n} be the first n sentences of T in this enumeration. Suppose $M \models \mathrm{PA}$ is such that

$$
M \models \operatorname{Con}\left(T_{n}\right)
$$

for all n. (On the right hand side, " T_{n} " should be interpreted as the numeral for the Godel number of T_{n}.) Show that M interprets a model of T; that is, there is a model of T whose universe, functions, and relations are all definable from parameters over M.
4. Let E be an r.e. equivalence relation on ω, and suppose E is not recursive. Show
(a) E has infinitely many equivalence classes,
(b) for each n, there are infinitely mant equivalence classes whose cardinality is different from n.
5. Let A be an r.e. set, and $B=\left\{e \mid W_{e}=A\right\}$. Show that either B is a Δ_{2}^{0} set, or B is a complete Π_{2}^{0} set.
6.
(a) A graph is a set with an irreflexive, symmetric binary relation. Show there is a graph $G=(V, E)$ such that whenever J and K are disjoint finite subsets of V, then there is an $a \in G$ such that

$$
\forall b \in J(a E b) \text { and } \forall b \in K(\neg a E b)
$$

(b) Show that if G is a graph as in part (a), then the theory of G is decidable.
7. Show that the theory of $(\mathbb{Q},+)$ is decidable.
8. Let T be the theory of $(\mathbb{Z},+)$. How many countable models (up to isomorphism) does T have?
9. Let T be a complete theory in a countable language. Show that the following are equivalent:
(a) T has a prime model \mathcal{A} such that there is a $\mathcal{B} \prec \mathcal{A}$ with $\mathcal{B} \neq \mathcal{A}$,
(b) T has an uncountable atomic model.

