Preliminary Examination Group in Logic and the Methodology of Science September 21, 2020

Problem 1:

Suppose that T is a computable subtree of the tree of finite binary sequences.

- 1. Show that if T is infinite then T has an infinite path.
- 2. Show that if T has a unique infinite path then that path is computable.

Problem 2:

Consider the set A of indices for partial computable functions from the natural numbers to the rational numbers which have totally bounded range (i.e., whose range has a finite supremum and finite infimum). Show that A is Σ_2^0 -complete.

Problem 3:

Show that PA is not finitely axiomitizable.

Problem 4:

Suppose that $A \subseteq \mathbb{N}$ is not computable. Show that there is another set B such that neither A nor B is computable relative to the other.

Problem 5:

Let $M_0 = (\mathbb{N}, s)$ (where s is the successor function) and let $M_0 \prec M_1$ be a proper elementary extension. Show that M_1 has a non-trivial automorphism.

Problem 6: (a) Prove that if \mathcal{M} and \mathcal{N} are linear orderings, there is a linear ordering \mathcal{C} such that \mathcal{M} can be embedded into \mathcal{C} and \mathcal{N} can be elementary embedded into \mathcal{C} .

(b) Let $\mathcal{M} = (M, \leq)$ be an infinite structure, where \leq defines a linear order. Assume that $Th(\mathcal{M})$ is modelcomplete. Show that the order \leq is dense in M (that is, for any a < b in M, there is $c \in M$ with a < c < b).

Problem 7:

Give an example of a structure M of size \aleph_1 such that Th(M) is not ω -categorical, but any two countable elementary substructures of M are isomorphic.

Problem 8:

Recall that for any structure M and $A \subseteq M$, dcl(A) denotes the set of elements definable over A.

Let T be a theory such that for any model $M \models T$ and any $A \subseteq M$, we have $dcl(A) \prec M$. Show that T has definable Skolem functions, that is: for every formula $\phi(x; \bar{y})$, there is a 0-definable function $f_{\phi}(\bar{y})$ such that

 $T \models (\forall \bar{y}) ((\exists x) \phi(x; \bar{y})) \longrightarrow \phi(f(\bar{y}); \bar{y}).$