Preliminary Examination Group in Logic and the Methodology of Science August 21, 2015

- 1. Let $\mathcal{L}_{<}$ be the first order language with with one binary relation symbol <. Let T be the set of sentences in $\mathcal{L}_{<}$ which are provable in first order Peano Arithmetic. Show that T is complete.
- 2. Prove that if all the elements of a first order structure \mathfrak{M} are algebraic (*i.e.*, satisfy a formula with only finitely many solutions in \mathfrak{M}), then \mathfrak{M} is atomic.
- 3. Prove that $A \leq_T 0'$ is low₂ (*i.e.* $A'' \equiv_T 0''$) if and only if there is a 0'-computable function that dominates all A-computable functions.
- 4. Suppose that B is a Π_1^0 subset of ω and that B has no infinite recursive subset. Show that B is not many-one complete among Π_1^0 subsets of ω .
- 5. Show that there is a sentence φ in the language of Peano Arithmetic such that the following conditions hold.
 - $PA \vdash \varphi$.
 - The shortest proof from PA of φ uses at least 2^p symbols, where p is the number of symbols in φ .
- 6. Show that there are two dense linear orders without least or greatest elements \mathfrak{M}_1 and \mathfrak{M}_2 such that \mathfrak{M}_1 and \mathfrak{M}_2 have the same cardinality but \mathfrak{M}_1 and \mathfrak{M}_2 are not isomorphic.
- 7. Let \mathcal{L} be a first-order language, T a complete \mathcal{L} -theory and Δ a set of \mathcal{L} -formulae in the free variable x. Show that the following two conditions are equivalent.
 - a. For any model $\mathfrak{M} \models T$ and pair of elements a and b from the universe of \mathfrak{M} , if for all $\delta \in \Delta$ one has $\mathfrak{M} \models \delta(a) \leftrightarrow \delta(b)$, then for every \mathcal{L} -formula ψ in the free variable x one has $\mathfrak{M} \models \psi(a) \leftrightarrow \psi(b)$.
 - b. For every \mathcal{L} formula ψ in the free variable x there is a formula θ which is a finite Boolean combination of elements of Δ for which $T \vdash (\forall x) [\psi \leftrightarrow \theta]$.
- 8. Show that
 - a. the theory of the structure $(\mathbb{C}, +, -, 0, 1)$ of the complex numbers considered as an abelian group with the elements 0 and 1 named has definable Skolem functions while
 - b. the theory of the structure $(\mathbb{C}, +, \cdot, -, 0, 1)$ of the complex numbers considered as a field does not have definable Skolem functions.

[Recall that a theory T in a language \mathcal{L} has definable Skolem functions if for any formula $\psi(x_1, \ldots, x_n, y)$ in the free variables x_1, \ldots, x_n, y there is a definable function $f_{\psi}(x_1, \ldots, x_n)$ taking the free variables x_1, \ldots, x_n so that $T \vdash (\forall x_1) \cdots (\forall x_n) [\psi(x_1, \ldots, x_n, f_{\psi}(x_1, \ldots, x_n) \leftrightarrow (\exists y) \psi(x_1, \ldots, x_n, y)]$.]