Preliminary Examination
Group in Logic and the Methodology of Science
August 21, 2015

1. Let $\mathcal{L}_{<}$be the first order language with with one binary relation symbol $<$. Let T be the set of sentences in $\mathcal{L}_{<}$which are provable in first order Peano Arithmetic. Show that T is complete.
2. Prove that if all the elements of a first order structure \mathfrak{M} are algebraic (i.e., satisfy a formula with only finitely many solutions in \mathfrak{M}), then \mathfrak{M} is atomic.
3. Prove that $A \leq_{T} 0^{\prime}$ is low 2 (i.e. $A^{\prime \prime} \equiv_{T} 0^{\prime \prime}$) if and only if there is a 0^{\prime}-computable function that dominates all A-computable functions.
4. Suppose that B is a Π_{1}^{0} subset of ω and that B has no infinite recursive subset. Show that B is not many-one complete among Π_{1}^{0} subsets of ω.
5. Show that there is a sentence φ in the language of Peano Arithmetic such that the following conditions hold.

- $P A \vdash \varphi$.
- The shortest proof from $P A$ of φ uses at least 2^{p} symbols, where p is the number of symbols in φ.

6. Show that there are two dense linear orders without least or greatest elements \mathfrak{M}_{1} and \mathfrak{M}_{2} such that \mathfrak{M}_{1} and \mathfrak{M}_{2} have the same cardinality but \mathfrak{M}_{1} and \mathfrak{M}_{2} are not isomorphic.
7. Let \mathcal{L} be a first-order language, T a complete \mathcal{L}-theory and Δ a set of \mathcal{L}-formulae in the free variable x. Show that the following two conditions are equivalent.
a. For any model $\mathfrak{M} \vDash T$ and pair of elements a and b from the universe of \mathfrak{M}, if for all $\delta \in \Delta$ one has $\mathfrak{M} \vDash \delta(a) \leftrightarrow \delta(b)$, then for every \mathcal{L}-formula ψ in the free variable x one has $\mathfrak{M} \mid=\psi(a) \leftrightarrow \psi(b)$.
b. For every \mathcal{L} formula ψ in the free variable x there is a formula θ which is a finite Boolean combination of elements of Δ for which $T \vdash(\forall x)[\psi \leftrightarrow \theta]$.
8. Show that
a. the theory of the structure $(\mathbb{C},+,-, 0,1)$ of the complex numbers considered as an abelian group with the elements 0 and 1 named has definable Skolem functions while
b. the theory of the structure $(\mathbb{C},+, \cdot,-, 0,1)$ of the complex numbers considered as a field does not have definable Skolem functions.
[Recall that a theory T in a language \mathcal{L} has definable Skolem functions if for any formula $\psi\left(x_{1}, \ldots, x_{n}, y\right)$ in the free variables x_{1}, \ldots, x_{n}, y there is a definable function $f_{\psi}\left(x_{1}, \ldots, x_{n}\right)$ taking the free variables x_{1}, \ldots, x_{n} so that $T \vdash\left(\forall x_{1}\right) \cdots\left(\forall x_{n}\right)\left[\psi\left(x_{1}, \ldots, x_{n}, f_{\psi}\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow\right.\right.$ $\left.(\exists y) \psi\left(x_{1}, \ldots, x_{n}, y\right)\right]$.]
