GROUP IN LOGIC AND THE METHODOLOGY OF SCIENCE FOUNDATIONS PRELIMINARY EXAMINATION

There are eight questions. Partial credit may be assigned for substantially correct partially worked solutions. To pass, you need a score of roughly fifty percent, though the ultimate decision about the passing mark will be decided by the committee of graders.

1. Find a complete theory T in a countable language \mathcal{L} which has exactly \aleph_0 countable models up to isomorphism and **prove** that your theory has this property.

2. Show that the following properties of a real number *a* are equivalent.

- (1) The set of rational numbers greater than a is Σ_2^0 .
- (2) There is a recursive sequence of rational numbers $(r_n : n \in \omega)$ such that $\limsup_{n \to \infty} r_n = a$.

3. Let $\mathcal{L} = \mathcal{L}(E)$ be the language with one binary relation E and no function or constant symbols. Let \mathfrak{A} be the \mathcal{L} -structure in which E is interpreted as an equivalence relation all of whose classes are finite and which has one class of size n for each positive integer n. Let \mathfrak{B} be the extension of \mathfrak{A} obtained by adding infinitely new elements to the universe of \mathfrak{A} , making them equivalent to each other and inequivalent to the elements of \mathfrak{A} . **Prove** $\mathfrak{A} \preceq \mathfrak{B}$.

4.

- (a) Show that there is an infinite recursive subtree T of $2^{<\omega}$ such that T has no recursive, infinite branch.
- (b) Let T be as in part (a), and let $\theta(v)$ be a formula that defines over the standard model of Peano Arithmetic (PA) the set $I = \{n \mid n \text{ is the code of a sequence that has infinitely many extensions in }T\}$. Show that for some $n \in I$, PA does not prove $\theta(\underline{n})$.

5. Let τ be a finite relational signature. Suppose that \mathfrak{A} is an $\mathcal{L}(\tau)$ -structure having the property that for any two finite substructures $\mathfrak{B} \subseteq \mathfrak{A}$ and $\mathfrak{C} \subseteq \mathfrak{A}$ and isomorphisms $f : \mathfrak{B} \to \mathfrak{C}$ there is an automorphism $\sigma \in \operatorname{Aut}(\mathfrak{A})$ with $f = \sigma \upharpoonright B$. Show that $\operatorname{Th}(\mathfrak{A})$ eliminates quantifiers.

6. Show that the set of indices for recursive convergent sequences of rational numbers is Π_3^0 -complete.

7. Let $\mathcal{L} = \mathcal{L}(E)$ be the language with a single binary relation symbol E. Let G and H be two (undirected) graphs regarded \mathcal{L} -structures in which E is interpreted as the edge relation. Let f be an elementary embedding from a graph G to H.

- (1) Show that if H is connected, so is G. (Recall that a graph is connected if any two vertices are connected by a finite path.)
- (2) Give an example where G is connected but H is not and prove that your solution works.

8. Let \mathcal{L} be the language of Peano Arithmetic (PA). For U an axiomatizable theory in \mathcal{L} , let $\operatorname{Prov}_U(v_0, v_1)$ naturally represent the relation "x is (the Gödel number of) a proof in U of (the sentence with Gödel number) y", and let Con_U be the associated sentence asserting that U is consistent. Let T be the theory obtained by adding to PA all instances of the schema

 $\exists v \operatorname{Prov}_{\mathsf{PA}}(v, \underline{\theta}) \to \theta,$

Date: 30 August 2014.

for θ a sentence in \mathcal{L} . (Here $\underline{\theta}$ is the numeral of the Gödel number of θ .) Let $S = \mathsf{PA} + \mathsf{Con}_{\mathsf{PA}}$. Show that $\mathsf{Con}_S \to \mathsf{Con}_T$ is not provable in T.