Logic and the Methodology of Science 2021 Preliminary Exam

1. Let $L = \{\leq, E\}$, where E is a binary relation. Let T be the L-theory saying that \leq is a dense linear order without endpoints, E is an equivalence relation with infinitely many classes, all of which are infinite and each E-class is convex (that is if E(a, b) and $a \leq c \leq b$, then E(a, c)). This theory admits elimination of quantifiers in L (you do not need to prove this).

Let $M \models T$ and let $(a_i : i < \omega)$ be an indiscernible sequence of elements of M. Assume that b, c are such that $(b) + (a_i : i < \omega)$ and $(a_i : i < \omega) + (c)$ are indiscernible sequences. Show that $(b) + (a_i : i < \omega) + (c)$ is indiscernible.

2. Let G be a connected ω -categorical graph. Show that there exists a natural number n > 0 such that any two elements are connect by a path of size at most n.

(A graph is a structure that contains only one binary relation E that is symmetric and anti-reflexive. A graph is *connected* if any two elements are connected by a path, that is $\forall x, y \exists z_1, ..., z_k (xEz_1 \land z_1Ez_2 \land ... \land z_kEy)$.)

3. Show that if a theory T is \aleph_1 -categorical in a countable language, then every uncountable model of T is ω -saturated.

(Hint: You may start by showing that the model of size \aleph_1 is homogeneous and contains a copy of every countable model of T.)

- 4. Let T be theory of $(\mathbb{Q}; 0, 1, +, \cdot)$. Show that T does not admit quantifier elimination in this language.
- 5. A sentence ϕ in the language of arithmetic is called *red* if it is Σ_1 and for any Σ_1 sentence ψ , $PA \cup \{\phi \leftrightarrow \psi\}$ is consistent.

Let ϕ be a Σ_1 sentence. Show that ϕ is red if and only if $\mathbb{N} \models \neg \phi$, but PA does not prove $\neg \phi$.

- 6. Let $A \subseteq \mathbb{N}$ be an infinite r.e. set. Prove that $\{e : W_e = A\}$ is Π_2 -complete.
- 7. Show that there is no partial computable function f such that whenever $W_a \neq \emptyset$, $f(a) \in W_a$ and if $W_a = W_b$ are non-empty, then f(a) = f(b). (Hint: you may consider $W_a = \{0, 1\}$, assume f(a) = 0.)
- 8. Show that if A is a Π_1^0 set of natural numbers, then there is a recursive binary tree $T \subseteq 2^{<\omega}$ such that the set of branches of T is exactly the set of characteristic functions of subsets of A.