Logic and the Methodology of Science 2021 Preliminary Exam

1. Let $L=\{\leq, E\}$, where E is a binary relation. Let T be the L-theory saying that \leq is a dense linear order without endpoints, E is an equivalence relation with infinitely many classes, all of which are infinite and each E-class is convex (that is if $E(a, b)$ and $a \leq c \leq b$, then $E(a, c)$). This theory admits elimination of quantifiers in L (you do not need to prove this).
Let $M \models T$ and let $\left(a_{i}: i<\omega\right)$ be an indiscernible sequence of elements of M. Assume that b, c are such that $(b)+\left(a_{i}: i<\omega\right)$ and $\left(a_{i}: i<\right.$ $\omega)+(c)$ are indiscernible sequences. Show that $(b)+\left(a_{i}: i<\omega\right)+(c)$ is indiscernible.
2. Let G be a connected ω-categorical graph. Show that there exists a natural number $n>0$ such that any two elements are connect by a path of size at most n.
(A graph is a structure that contains only one binary relation E that is symmetric and anti-reflexive. A graph is connected if any two elements are connected by a path, that is $\left.\forall x, y \exists z_{1}, \ldots, z_{k}\left(x E z_{1} \wedge z_{1} E z_{2} \wedge \ldots \wedge z_{k} E y\right).\right)$
3. Show that if a theory T is \aleph_{1}-categorical in a countable language, then every uncountable model of T is ω-saturated.
(Hint: You may start by showing that the model of size \aleph_{1} is homogeneous and contains a copy of every countable model of T.)
4. Let T be theory of $(\mathbb{Q} ; 0,1,+, \cdot)$. Show that T does not admit quantifier elimination in this language.
5. A sentence ϕ in the language of arithmetic is called red if it is Σ_{1} and for any Σ_{1} sentence $\psi, P A \cup\{\phi \leftrightarrow \psi\}$ is consistent.

Let ϕ be a Σ_{1} sentence. Show that ϕ is red if and only if $\mathbb{N} \models \neg \phi$, but PA does not prove $\neg \phi$.
6. Let $A \subseteq \mathbb{N}$ be an infinite r.e. set. Prove that $\left\{e: W_{e}=A\right\}$ is $\Pi_{2^{-}}$ complete.
7. Show that there is no partial computable function f such that whenever $W_{a} \neq \emptyset, f(a) \in W_{a}$ and if $W_{a}=W_{b}$ are non-empty, then $f(a)=f(b)$. (Hint: you may consider $W_{a}=\{0,1\}$, assume $f(a)=0$.)
8. Show that if A is a Π_{1}^{0} set of natural numbers, then there is a recursive binary tree $T \subseteq 2^{<\omega}$ such that the set of branches of T is exactly the set of characteristic functions of subsets of A.

