- 1. Suppose that φ and ψ are formulas in propositional logic, φ is not a contradiction, ψ is not a tautology, and $(\varphi \to \psi)$ is a tautology. Show that there is a propositional formula θ such that every propositional symbol that appears in θ also appears in both φ and ψ and such that $(\varphi \to \theta)$ and $(\theta \to \psi)$ are tautologies.
- 2. Show that $(\mathbb{Z}, +)$ is minimal, but not prime.
- 3. Assume that \mathfrak{M} and \mathfrak{N} are elementarily equivalent structures for a countable language. Assume that \mathfrak{M} is countable. Show that \mathfrak{M} embeds into any ultrapower of \mathfrak{N} by a nonprincipal ultrafilter.
- 4. *I* is an index set if and only if $e \in I$ and $W_e = W_n$ implies $n \in I$, where $(W_i : i \in \mathbb{N})$ is the canonical indexing of recursively enumerable sets. Let *I* be a recursively enumerable index set, and let $C = \{W_e : e \in I\}$. Show:
 - (a) If $W_e \in C$ then there is a finite subset F of W_e such that $F \in C$.
 - (b) If $F \in C$ and $F \subseteq W_n$ then $W_n \in C$.
 - (c) There is a recursively enumerable set S of canonical finite sets such that for all $e, e \in I$ if and only if for some $F \in S, F \subseteq W_e$.
- 5. Show that the index set $\{e: W_e \text{ is infinite}\}\$ is not recursive relative to \emptyset' .
- 6. Let φ be a Π_1^0 sentence st $PA \vdash (\varphi \rightarrow Con(PA))$. Show there is a sentence ψ such that $PA \vdash (\varphi \leftrightarrow Con(PA \cup \{\psi\}))$.

Hint: for $\varphi = \forall w \theta(w)$, where θ is limited, show there is a Σ_1^0 sentence ψ such that $PA \vdash (\psi \leftrightarrow (\exists p)(\forall w < p)[\theta(w) \land "p \text{ is a proof of } \neg \psi \text{ from } PA"])$

- 7. Let M be a structure and $a \in M$ an element. Assume that there are infinitely many elements in M which have the same type as a (over \emptyset). Show that there is an elementary extension $M \prec N$ and an automorphism σ of N such that $a, \sigma(a), \sigma^2(a), \sigma^3(a), \ldots$ are pairwise distinct.
- 8. Let L be a finite relational language and M an L-structure. Assume that M admits elimination of quantifiers in L. Show that the theory of M is ω -categorical.