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What is an algorithm?

Basic aim: to “define” (or represent) algorithms in set theory,
in the same way that we represent real numbers (Cantor,
Dedekind) and random variables (Kolmogorov) by
set-theoretic objects

What set-theoretic objects represent algorithms?

When do two two set-theoretic objects represent the same
algorithm? (The algorithm identity problem)

In what way are algorithms effective?

. . . and do it so that the basic results about algorithms can be
established rigorously (and naturally)

. . . and there should be some applications!
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Plan for the lectures

Lecture 1. Algorithms and implementations
Discuss the problem and some ideas for solving it

Lecture 2. English as a programming language
Applications to Philosophy of language (and linguistics?)
synonymy and faithful translation ∼ algorithm identity

Lecture 3. The axiomatic derivation of absolute lower bounds
Applications to complexity (joint work with Lou van den Dries)
Do not depend on pinning down algorithm identity

Lectures 2 and 3 are independent of each other and mostly
independent of Lecture 1

I will oversimplify, but: All lies are white (John Steel)
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Outline of Lecture 1

Slogan: The theory of algorithms is the theory of recursive equations

(1) Three examples
(2) Machines vs. recursive definitions
(3) Recursors
(4) Elementary algorithms
(5) Implementations

Notation:

N = {0, 1, 2, . . .}
a ≥ b ≥ 1, a = bq + r , 0 ≤ r < b

=⇒ q = iq(a, b), r = rem(a, b)

gcd(a, b) = the greatest common divisor of a and b

a⊥⊥b ⇐⇒ rem(a, b) = 1 (a and b are coprime)
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The Euclidean algorithm ε

For a, b ∈ N, a ≥ b ≥ 1,

ε : gcd(a, b) = if (rem(a, b) = 0) then b else gcd(b, rem(a, b))

cε(a, b) = the number of divisions needed to compute gcd(a, b) using ε

Complexity of the Euclidean
If a ≥ b ≥ 2, then cε(a, b) ≤ 2 log2(a)

Proofs of the correctness and the upper bound are by induction on
max(a, b)
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What is the Euclidean algorithm?

ε : gcd(a, b) = if (rem(a, b) = 0) then b else gcd(b, rem(a, b))

It is an algorithm on N, from (relative to) the remainder
function rem and it computes gcd : N2 → N
It is needed to make precise the optimality of the Euclidean:

Basic Conjecture
For every algorithm α which computes on N from rem the greatest
common divisor function, there is a constant r > 0 such that for
infinitely many pairs a ≥ b ≥ 1,

cα(a, b) ≥ r log2(a)
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Sorting (alphabetizing)

Given an ordering ≤ on a set A and any u = 〈u0, . . . , un−1〉 ∈ An

sort(u) = the unique, sorted (non-decreasing) rearrangement

v = 〈uπ(0), uπ(1), . . . , uπ(n−1)〉

where π : {0, . . . , n − 1} !→ {0, . . . , n − 1} is a permutation

head(〈u0, . . . , un−1〉) = u0

tail(〈u0, . . . , un−1〉) = 〈u1, . . . , un−1〉
〈x〉 ∗ 〈u0, . . . , un−1〉 = 〈x , u0, . . . , un−1〉 (prepend)

|〈u0, . . . , un−1〉| = n (the length of u)

h1(u) = the first half of u (the first half)

h2(u) = the second half of u (the second half)

Yiannis N. Moschovakis: Algorithms and implementations 6/25



The mergesort algorithm σm

sort(u) = if (|u| ≤ 1) then u else merge(sort(h1(u)), sort(h2(u)))

merge(v ,w) =






w if |v | = 0,
v else, if |w | = 0,
〈v0〉 ∗merge(tail(v),w) else, if v0 ≤ w0,
〈w0〉 ∗merge(v , tail(w)) otherwise.

(1) If v ,w are sorted, then merge(v ,w) = sort(w ∗ v)

(2) The sorting and merging function satisfy these equations

(3) merge(v ,w) can be computed using no more than
|v | + |w |−· 1 comparisons

(4) sort(u) can be computed by σm using no more than
|u| log2(|u|) comparisons (|u| > 1)
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What is the mergesort algorithm?

sort(u) = if (|u| ≤ 1) then u else merge(sort(h1(u)), sort(h2(u)))

merge(v ,w) =






w if |v | = 0,
v else, if |w | = 0,
〈v0〉 ∗merge(tail(v),w) else, if v0 ≤ w0,
〈w0〉 ∗merge(v , tail(w)) otherwise.

cσm(u) = the number of comparisons needed to compute sort(u)

using σm ≤ |u| log2(|u|) (|u| > 0)

It is an algorithm from the ordering ≤ and the functions
head(u), tail(u), |u|, . . .
It is needed to make precise the optimality of σm:
For every sorting algorithm σ from ≤, head, tail, . . ., there is
an r > 0 and infinitely many sequences u such that
cσ(u) ≥ r |u| log2(|u|) (well known)
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The Gentzen Cut Elimination algorithm

Every proof d of the Gentzen system for Predicate Logic can be
transformed into a cut-free proof γ(d) with the same conclusion

γ(d) = if T1(d) then f1(d)

else if T2(d) then f2(γ(τ(d)))

else f3(γ(σ1(d)), γ(σ2(d)))

It is a recursive algorithm from natural syntactic primitives,
very similar in logical structure to the mergesort

Main Fact: |γ(d)| ≤ e(ρ(d), |d |), where |d | is the length of
the proof d , ρ(d) is its cut-rank, and

e(0, k) = k, e(n + 1, k) = 2e(n,k)
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The infinitary Gentzen algorithm

If we add the ω-rule to the Gentzen system for Peano arithmetic,
then cuts can again be eliminated by an extension of the finitary
Gentzen algorithm

γ∗(d) = if T1(d) then f1(d)

else if T2(d) then f2(γ
∗(τ(d)))

else if T3(d) then f3(γ
∗(σ1(d)), γ∗(σ2(d)))

else f4(λ(n)γ∗(ρ(n, d))),

where f4 is a functional embodying the ω-rule

Again |γ∗(d)| ≤ e(ρ(d), |d |), where cut-ranks and lengths of
infinite proofs are ordinals, e(α, β) is defined by ordinal
recursion, and so every provable sentence has a cut-free proof
of length less than
ε0 = the least ordinal > 0 and closed under α -→ ωα
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Abstract machines (computation models)
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A machine m : X " Y is a tuple (S , input,σ,T , output) such that

1. S is a non-empty set (of states)

2. input : X → S is the input function

3. σ : S → S is the transition function

4. T is the set of terminal states, T ⊆ S

5. output : T → Y is the output function

m(x) = output(σn(input(x)))

where n = least such that σn(input(x)) ∈ T
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Infinitary algorithms are not machines

It is useful to think of the infinitary Gentzen “effective
procedure” as an algorithm

There are applications of infinitary algorithms (in Lecture 2)

Machines are special algorithms which implement finitary
algorithms

The relation between an (implementable) algorithm and its
implementations is interesting
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Which machine is the Euclidean?

ε : gcd(a, b) = if (rem(a, b) = 0) then b else gcd(b, rem(a, b))

Must specify a set of states, an input function, a transition
function, etc.

This can be done, in many ways, generally called
implementations of the Euclidean

The choice of a “natural” (abstract) implementation is
irrelevant for the correctness and the log upper bound of the
Euclidean, which are derived directly from the recursive
equation above and apply to all implementations

Claim: ε is completely specified by the equation above
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Which machine is the mergesort algorithm?

sort(u) = if (|u| ≤ 1) then u else merge(sort(h1(u)), sort(h2(u)))

merge(v ,w) =






w if |v | = 0,
v else, if |w | = 0,
〈v0〉 ∗merge(tail(v),w) else, if v0 ≤ w0,
〈w0〉 ∗merge(v , tail(w)) otherwise.

Many (essentially) different implementations
sequential (with specified orders of evaluation), parallel, . . .

The correctness and n log2(n) upper bound are derived
directly from a (specific reading) of these recursive equations

• They should apply to all implementations of the mergesort

Claim: σm is completely specified by the system above

Task: Define σm, define implementations, prove •
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Slogans and questions

Algorithms compute functions from specific primitives

They are specified by systems of recursive equations

An algorithm is (faithfully modeled by) the semantic content
of a system of recursive equations

Machines are algorithms, but not all algorithms are machines

Some algorithms have machine implementations

An algorithm codes all its implementation-independent
properties

What is the relation between an algorithm and its implementations?
. . . or between two implementations of the same algorithm?

Main slogan

The theory of algorithms is the theory of recursive equations

(Skip non-deterministic algorithms and fairness)
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Monotone recursive equations

A complete poset is a partial ordered set D = (Field(D),≤D)
in which every directed set has a least upper bound

Standard example:
(X ⇀ Y ) = the set of all partial functions f : X ⇀ Y

A function f : D → E is monotone if x ≤D y =⇒ f (x) ≤E f (y)
(f : X ⇀ Y is a monotone function on X to Y ∪ {⊥})
For every monotone f : D → D on a complete D, the

equation x = f (x) has a least solution

Complete posets (domains) are the basic objects studied in
Scott’s Denotational Semantics for programming languages

Much of this work can be viewed as a refinement of
Denotational Semantics (which interprets programs by algorithms)
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Recursors
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A recursor α : X " W is a tuple α = (α0,α1, . . . ,αk) such that

1. X is a poset, W is a complete poset

2. D1, . . . ,Dk are complete posets, Dα = D1 × · · ·× Dk ,
the solution space of α

3. αi : X × Dα → Di is monotone (i = 1, . . . , k)

4. τα(x ,,d) = (α1(x ,,d), . . . ,αk(x ,,d)) is the transition function,
τα : X × Dα → Dα

5. α0 : X × D1 × · · ·× Dk → W is monotone, the output map

α(x) = α0(x , d1, . . . , dk) for the least solution of ,d = τα(x ,,d)

We write α(x) = α0(x ,,d) where {,d = τα(x ,,d)}
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Recursor isomorphism

Two recursors

α = (α0,α1, . . . ,αk), α′ = (α′
0,α

′
1, . . . ,α

′
m) : X " W

are isomorphic (α 1 α′) if

(1) k = m (same number of parts)

(2) There is a permutation π : {1, . . . , k} and poset isomorphisms
ρi : Di → D ′

π(i) (i = 1, . . . , k) such that . . .

(the order of the equations in the system ,d = τα(x ,,d) does
not matter)

Isomorphic recursors α, α′ : X " W compute the same function
α = α′ : X → W
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Machines or recursors?

With each machine m = (S , input,σ,T , output) : X " Y we
associate the tail recursor

r (x) = p(input(x)) where

{p = λ(s)[if (s ∈ T ) then output(s) else p(σ(s))]}

m and r compute the same partial function r = m : X ⇀ Y

Theorem (with V. Paschalis) The map m -→ r respects
isomorphisms, m 1 m′ ⇐⇒ r 1 r ′

The question is one of choice of terminology
(because the mergesort system is also needed)

Yuri Gurevich has argued that algorithms are machines
(and of a very specific kind)

Jean-Yves Girard has also given similar arguments

Yiannis N. Moschovakis: Algorithms and implementations 19/25



Elementary (first order) algorithms

Algorithms which compute partial functions from given partial functions

(Partial, pointed) algebra M = (M, 0, 1,ΦM)

where 0, 1 ∈ M, Φ is a set of function symbols (the vocabulary)
and ΦM = {φM}φ∈Φ, with φM : Mnφ ⇀ M for each φ ∈ Φ

Nε = (N, 0, 1, rem), the Euclidean algebra
Nu = (N, 0, 1,S ,Pd), the unary numbers
Nb = (N, 0, 1,Parity, iq2, (x -→ 2x), (x -→ 2x + 1)), the binary numbers
A∗ = (A∗, 0, 1,≤, head, tail, . . .), the mergesort algebra, with 0, 1 ∈ A∗

Standard model-theoretic notions must be mildly adapted, for
example for (partial) subalgebras:

U ⊆p M ⇐⇒ {0, 1} ⊆ U ⊆ M and for all φ,φU ⊆ φM
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Recursive (McCarthy) programs of M = (M , 0, 1, ΦM)

Explicit Φ-terms (with partial function variables and conditionals)

A :≡ 0 | 1 | vi | φ(A1, . . . ,An) | pn
i (A1, . . . ,An)

| if (A = 0) then B else C

Recursive program (only ,xi , p1, . . . , pK occur in each part Ai ):

A :






pA(,x0) = A0

p1(,x1) = A1
...

pK (,xK ) = AK

(A0 : the head, (A1, . . . ,AK ) : the body)

What is the semantic content of the system A?
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The recursor of a program in M

A :






pA(,x0) = A0

p1(,x1) = A1
...

pK (,xK ) = AK

r(A,M)(,x) = den(A0,M)(,x ,,p) where
{

p1 = λ(,x1)den(A1,M)(,x1,,p), . . . , pK = λ(,xK )den(AK ,M)(,xK ,,p)
}

r(A,M) is not exactly the algorithm expressed by A in M.

For example, if A : pA(,x) = A0(,x) has empty body, then

r(A,M)(,x) = den(A0,M)(,x) where { }

is just the function defined on M by A0

(which may involve much explicit computation)
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The problem of defining implementations

van Emde Boas:

Intuitively, a simulation of [one class of computation
models] M by [another] M ′ is some construction which
shows that everything a machine Mi ∈ M can do on
inputs x can be performed by some machine M ′

i ∈ M ′ on
the same inputs as well;

We will define a reducibility relation α ≤r β and call a machine m
an implementation of α if α ≤r r

(where r is the recursor representation of the machine m)
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Recursor reducibility

Suppose α, β : X " W , (e.g., β = r where m : X " W ):
A reduction of α to β is any monotone mapping

π : X × Dα → Dβ

such that the following three conditions hold, for every x ∈ X and
every d ∈ Dα:

(R1) τβ(x ,π(x , d)) ≤ π(x , τα(x , d)).

(R2) β0(x ,π(x , d)) ≤ α0(x , d).

(R3) α(x) = β(x).

α ≤r β if a reduction exists

m implements α if α ≤r r
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Implementations of elementary algorithms

Theorem (with Paschalis)

For any recursive program A in an algebra M, the standard
implementation of A is an implementation of r(A,M)

. . .Uniformly enough, so that (with the full definitions), the
standard implementation of A implements the elementary
algorithm expressed by A in M

. . . And this is true of all familiar implementations of recursive
programs

. . . so that the basic (complexity and resource use) upper and lower
bounds established from the program A hold of all
implementations of A

And for the applications to complexity theory, we work directly
with the recursive equations of A
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English as a programming language

Yiannis N. Moschovakis
UCLA and University of Athens

Tarski Lecture 2, March 5, 2008



Frege on sense

“[the sense of a sign] may be the common property of many
people” Meanings are public (abstract?) objects

“The sense of a proper name is grasped by everyone who is
sufficiently familiar with the language . . . Comprehensive knowledge
of the thing denoted . . . we never attain”

Speakers of the language know the meanings of terms

“The same sense has different expressions in different languages or
even in the same language”

“The difference between a translation and the original text should
properly not overstep the [level of the idea]”

Faithful translation should preserve meaning
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Outline of Lecture 2

Slogan:
The meaning of a term is the algorithm which computes its denotation

(1) Formal Fregean semantics in Lλ
r (K )

(2) Meaning and synonymy in Lλ
r (K )

(3) What are the objects of belief? (Local synonymy)

(4) The decision problem for synonymy

Sense and denotation as algorithm and value (1994)
A logical calculus of meaning and synonymy (2006)
Two aspects of situated meaning (with E. Kalyvianaki, to appear)
Posted in www.math.ucla.edu/∼ynm
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The methodology of formal Fregean semantics

An interpreted formal language L is selected

The rendering operation on a fragment of English:

English expression + informal context
render−−−→ formal expression + state

Semantic values (denotations, meanings, etc.) are defined
rigorously for the formal expressions of L and assigned to
English expressions via the rendering operation

Montague: L should be a higher type language
(to interpret co-ordination, co-indexing, . . . )

Claim: L should be a programming language
(to interpret self-reference and to define meanings properly)
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The typed λ-calculus with recursion Lλ
r (K ) - types

An extension of the typed λ-calculus, into which Montague’s
Language of Intensional Logic LIL can be easily interpreted (Gallin)

Basic types b ≡ e | t | s (entities, truth values, states)

Types: σ :≡ b | (σ1 → σ2)

Abbreviation: σ1 × σ2 → τ ≡ (σ1 → (σ2 → τ))

Every non-basic type is uniquely of the form

σ ≡ σ1 × · · ·× σn → b

level(b) = 0
level(σ1 × · · ·× σn → b) = max{level(σ1), . . . , level(σn)} + 1
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The typed λ-calculus with recursion Lλ
r (K ) - syntax

Pure variables: vσ
0 , vσ

1 , . . . , for each type σ (v : σ)
Pure parameters: ū for each state u (for convenience only)
Recursive variables: pσ

0 , pσ
1 , . . . , for each type σ (p : σ)

Constants: A finite set K of typed constants (run, cow, he, the, every)

Terms – with assumed type restrictions and assigned types (A : σ)

A :≡ v | ū | p | c | B(C ) | λ(v)(B)

| A0 where {p1 = A1, . . . , pn = An}

C : σ,B : (σ → τ) =⇒ B(C ) : τ

v : σ,B : τ =⇒ λ(v)(B) : (σ → τ)

A0 : σ =⇒ A0 where {p1 = A1, . . . , pn = An} : σ

Abbreviation: A(B,C ,D) ≡ A(B)(C )(D)
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Lλ
r (K ) - denotational semantics

• We are given basic sets Ts , Te and Tt ⊆ Te for the basic types

Tσ→τ = the set of all functions f : Tσ → Tτ

Pb = Tb ∪ {⊥} = the “flat poset” of Tb

Pσ→τ = the set of all functions f : Tσ → Pτ

Tσ ⊆ Pσ and Pσ is a complete poset (with the pointwise ordering)

• We are given an object c : Pσ for each constant c : σ

Pure variables of type σ vary over Tσ; recursive ones over Pσ

If A : σ and π is a type-respecting assignment to the variables,
then den(A)(π) ∈ Pσ

Recursive terms are interpreted by the taking of
least-fixed-points
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Rendering natural language in Lλ
r (K )

t̃ ≡ (s → t) (type of Carnap intensions)

ẽ ≡ (s → e) (type of individual concepts)

Abelard loves Eloise
render−−−→ loves(Abelard,Eloise) : t̃

Bush is the president
render−−−→ eq(Bush,the(president)) : t̃

liar
render−−−→ p where {p = ¬p} : t

truthteller
render−−−→ p where {p = p} : t

Abelard,Eloise,Bush : ẽ

president : ẽ → t̃, eq : ẽ × ẽ → t̃

¬ : t → t, the : (ẽ → t̃)→ ẽ

den(liar) = den(truthteller) = ⊥
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Co-ordination and co-indexing in Lλ
r (K )

John stumbled and fell vs. John stumbled and he fell

John stumbled and fell
render−−−→ λ(x)

(
stumbled(x) & fell(x)

)
(John)

(predication after co-ordination)

This is in Montague’s LIL (as it is interpreted in Lλ
r (K ))

John stumbled and he fell
render−−−→ stumbled(j) & fell(j) where {j = John}

(conjunction after co-indexing)

The logical form of this sentence cannot be captured faithfully in
LIL — recursion models co-indexing preserving logical form
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Can we say nonsense in Lλ
r (K )?

Yes!
In particular, we have parameters over states—so we can explicitly
refer to the state (even to two states in one term); LIL does not
allow this, because we cannot do this in English

Consider the terms

A ≡ rapidly(tall)(John), B ≡ rapidly(sleeping)(John) : t̃

A and B are terms of LIL,
not the renderings of correct English sentences

The target formal language is a tool for defining rigorously the
desired semantic values and it needs to be richer than a direct
formalization of the relevant fragment of English

—to insure compositionality, if for no other reason
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Meaning and synonymy in Lλ
r (K )

For a sentence A : t̃, the Montague sense of A is
den(A) : Ts → Tt , so that

there are infinitely many primes

is Montague-synonymous with 1 + 1 = 2

In Lλ
r (K ): The meaning of a term A is modeled by an

algorithm int(A) which computes den(A)(π) for every π

The referential intension int(A) is compositionally determined
from A

int(A) is an abstract (not necessarily implementable) recursive
algorithm of Lλ

r (K )

Referential synonymy: A ≈ B ⇐⇒ int(A) ∼ int(A)
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Reduction, Canonical Forms and the Synonymy Theorem

A reduction relation A⇒ B is defined on terms of Lλ
r (K )

Each term A is reducible to a unique (up to congruence)
irreducible recursive term, its canonical form

A⇒ cf(A) ≡ A0 where {p1 = A1, . . . , pn = An}

int(A) = (den(A0), den(A1), . . . , den(An))

The parts A0, . . . ,An of A are irreducible, explicit terms

cf(A) models the logical form of A

Synonymy Theorem. A ≈ B if and only if

B ⇒ cf(B) ≡ B0 where {p1 = B1, . . . , pm = Bm}

so that n = m and for i ≤ n, den(Ai ) = den(Bi )
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Is this notion of meaning Fregean?

Evans (in a discussion of Dummett’s similar, computational
interpretations of Frege’s sense):

“This leads [Dummett] to think generally that the sense
of an expression is (not a way of thinking about its
[denotation], but) a method or procedure for determining
its denotation. So someone who grasps the sense of a
sentence will be possessed of some method for
determining the sentence’s truth value
. . . ideal verificationism
. . . there is scant evidence for attributing it to Frege”

Converse question: For a sentence A, if you possess the method
determined by A for determining its truth value, do you then
“grasp” the sense of A?

(Sounds more like Davidson rather than Frege)
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The reduction calculus

Bush is the president
render−−−→ eq(Bush)(the(president))

⇒ eq(Bush)(L) where {L = the(president)}
⇒ eq(Bush)(L) where {L = the(p) where {p = president}}

⇒ eq(Bush)(L) where {L = the(p), p = president}

⇒
(
eq(b) where {b = Bush}

)
(L) where {L = the(p),

p = president}

⇒
(
eq(b)(L) where {b = Bush}

)
where {L = the(p),

p = president}
⇒cf eq(b)(L) where {b = Bush, L = the(p), p = president}

He is the president
render−−−→ eq(He)(the(president))

⇒cf eq(b)(L) where {b = He, L = the(p), p = president}
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The reduction calculus
John loves and honors his father
render−−−→

(
λ(x)(loves(j , x) & honors(j , x))

)
(father(j)) where {j = John}

⇒
[(

λ(x)(loves(j , x) & honors(j , x))
)
(f ) where {f = father(j)}

]

where {j = John}
⇒

(
λ(x)(loves(j , x) & honors(j , x))

)
(f )

where {f = father(j), j = John}
⇒

(
λ(x)

[
(l & h) where {l = loves(j , x), h = honors(j , x)}

])
(f )

where {f = father(j), j = John}
⇒

(
λ(x)(l(x) & h(x))

where {l = λ(x)loves(j , x), h = λ(x)honors(j , x)}
)
(f )

where {f = father(j), j = John}
⇒ λ(x)(l(x) & h(x))(f )
where {l = loves(j , ·), h = honors(j , ·), f = father(j), j = John}
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Utterances, local meanings, local synonymy

An utterance is a pair (A, u), where A is a sentence, A : t̃ and u is
a state; it is expressed in Lλ

r (K ) by the term A(ū)

The local meaning of A at the state u is int(A(ū))

A ≈u B ⇐⇒ A(ū) ≈ B(ū)

Bush is the president(ū)

⇒cf eq(b)(L)(ū) where {b = Bush, L = the(p), p = president}

He is the president(ū)

⇒cf eq(b)(L)(ū) where {b = He, L = the(p), p = president}

Bush is the president $≈u He is the president

even if at the state ū, He(ū) = Bush(ū)
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Three aspects of meaning for a sentence A : t̃

Referential intension int(A) Referential synonymy ≈
Local meaning at u int(A(ū)) Local synonymy ≈u

Factual content at u FC(A, u) Factual synonymy ≈f ,u

The factual content of a sentence at a state u gives a
representation of the world at u (Eleni Kalyvianaki’s Ph.D. Thesis)

Bush is the president "≈u He is the president

Bush is the president ≈f ,u He is the president

Claim: The objects of belief are local meanings

The distinction between local meaning and factual content are
related to David Kaplan’s distinction between the character and
content of a sentence at a state
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Some referential (global) synonymies and non-synonymies

There are infinitely many primes !≈ 1 + 1 = 2

A & B ≈ B & A

The morning star is the evening star
≈The evening star is the morning star

(This fails with Montague’s renderings)

Abelard loves Eloise ≈ Eloise is loved by Abelard (Frege)

2 + 3 = 6 ≈ 3 + 2 = 6 (with + and the numbers primitive)

liar !≈ truthteller

John stumbled and he fell
render−−−→

A ≡ stumbled(j) & fell(j) where {j = John}
A is not ≈ with any explicit term (including any term from LIL)
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Is referential synonymy decidable?

Synonymy Theorem. A ≈ B if and only if

A⇒ cf(A) ≡ A0 where {p1 = A1, . . . , pn = An}
B ⇒ cf(B) ≡ B0 where {p1 = B1, . . . , pn = Bn}

so that for i = 0, . . . , n and all π, den(Ai )(π) = den(Bi )(π).

Synonymy is reduced to denotational equality for
explicit, irreducible terms (the truth facts of A)

Denotational equality for arbitrary terms is undecidable
(there are constants, with fixed interpretations)

The explicit, irreducible terms are very special
— but by no means trivial!
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The synonymy problem for Lλ
r (K ) (with finite K )

The decision problem for Lλ
r (K )-synonymy is open

Theorem If the set of constants K is finite, then synonymy is
decidable for terms of adjusted level ≤ 2

These include terms constructed “simply” from

Names of “pure” objects 0, 1, 2, ∅, . . . : e
Names, demonstratives John, I, he, him : ẽ
Common nouns man, unicorn, temperature : ẽ → t̃
Adjectives tall, young : (ẽ → t̃) → (ẽ → t̃)
Propositions it rains : t̃
Intransitive verbs stand, run, rise : ẽ → t̃
Transitive verbs find, loves, be : ẽ × ẽ → t̃
Adverbs rapidly : (ẽ → t̃) → (ẽ → t̃)

Proof is by reducing this claim to the Main Theorem in the 1994
paper (for a corrected version see www.math.ucla.edu/∼ynm)
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Explicit, irreducible identities that must be known

Los Angeles = LA (Athens = )

x & y = y & x

between(x , y , z) = between(x , z , y)

love(x , y) = be loved(y , x)

A dictionary is needed—but what kind and how large?

ev2(λ(u1, u2)r(u1, u2,"a), b, z) = ev1(λ(v)r(v , z ,"a), b)

Evaluation functions: both sides are equal to r(b, z ,"a)

The dictionary line which determines this is (essentially)

λ(s)x(s, z) = λ(s)y(s) =⇒ ev2(x , b, z) = ev1(y , b)
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The form of the decision algorithm

A finite list of true dictionary lines is constructed, which
codifies the relationships between the constants

Given two explicit, irreducible terms A,B of adjusted level
≤ 2, we construct (effectively) a finite set L(A,B) of lines
such that

|= A = B

⇐⇒ every line in L(A,B) is congruent to one in the dictionary

It is a lookup algorithm, justified by a finite basis theorem

Complexity: NP; the graph isomorphism problem is reducible
to the synonymy problem for very simple (propositional)
recursive terms
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A lower bound result

Theorem (van den Dries, ynm)

If an algorithm α decides the coprimeness relation x⊥⊥y on N from
the primitives ≤,+,−· , iq, rem, then for infinitely many a, b

cs
α(a, b) >

1

10
log log(max(a, b)) (*)

In fact (*) holds for all solutions of Pell’s equation, a2 = 1 + 2b2

iq(x , y), rem(x , y) are the integer quotient and remainder

cs
α(x , y) counts the number of applications of the primitives in

the computation

Claim: This applies to all algorithms from the specified primitives

The Euclidean decides coprimeness from rem with complexity

cs
ε (a, b) ≤ 2 log(min(a, b)) (min(a, b) ≥ 2)
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Outline of Lecture 3

Slogan: Lower bound results
are the undecidability facts about decidable problems

. . . and so they should be (to some extent) a matter of logic

(1) Tweak logic (a bit) so it applies smoothly to computation theory

(2) Three (simple) axioms for elementary algorithms,
a la abstract model theory

(3) Lower bounds from the axioms

(4) Lower bounds for elementary algorithms on logical extensions

Is the Euclidean algorithm optimal among its peers? (with vDD, 2004)
Arithmetic complexity (with vDD, to appear)
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Partial algebras, embeddings and subalgebras

A (Partial, pointed) algebra is a structure M = (M, 0, 1,ΦM)

where 0, 1 ∈ M, Φ is a set of function symbols (the vocabulary)

and ΦM = {φM}φ∈Φ, with φM : Mnφ ⇀ M for each φ ∈ Φ

An embedding ι : U ! M from one Φ-algebra into another is
any injection ι : U ! M such that

ι(0U) = 0M, ι(1U) = 1M,

and for all φ ∈ Φ, x1, . . . , xn,w ∈ U,

φU(x1, . . . , xn) = w =⇒ φM(ιx1, . . . , ιxn) = ιw

U ⊆p M if the identity I : U ! M is an embedding
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Algebra restrictions

Nε = (N, 0, 1, rem), the Euclidean algebra
Nu = (N, 0, 1,S ,Pd), the unary numbers
Nb = (N, 0, 1,Parity, iq2, (x !→ 2x), (x !→ 2x + 1)), the binary numbers

For M = (M, 0, 1,ΦM) and {0, 1} ⊆ U ⊆ M, let

M!U = (U, 0, 1,ΦU),

where for φ ∈ Φ,

φU("x) = w ⇐⇒ "x ,w ∈ U & φM("x) = w

For finite U ⊂ N, Nu !U is a finite, properly partial subalgebra of N
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Subalgebras generated from the input, M = (M , 0, 1, ΦM)

For !x = x1, . . . , xn ∈ M, set

G0(!x) = {0, 1, x1, . . . , xn}
Gm+1(!x) = Gm(!x) ∪ {φM(!u) | φ ∈ Φ,!u ∈ Gm(!x) and φM(!u)↓}

so that

Gm(!x) = {tM[x1, . . . , xn] ∈ M | t(v1, . . . , vn) is a term of depth ≤ m}

M!Gm(!x) is the subalgebra of depth m generated by !x

(M!⋃m Gm(!x) is the subalgebra generated by !x)
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I The Locality Axiom

An algorithm α of arity n of an algebra M = (M, 0, 1,ΦM) assigns
to each subalgebra U ⊆p M an n-ary, strict partial function

αU : Un ⇀ U

M-algorithms “compute” strict partial functions, and they can
be localized (relativized) to arbitrary subalgebras of M

We write

U |= α(#x) = w ⇐⇒ #x ∈ Un,w ∈ U and αU(#x) = w
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II The Embedding Axiom

If α is an n-ary algorithm of M, U,V ⊆p M, and
ι : U ! V is an embedding, then

U |= α(#x) = w =⇒ V |= α(ι#x) = ιw (x1, . . . , xn,w ∈ U)

In particular, if U ⊆p M, then αU ⊆ αM

An algorithm treats the primitives of M as oracles: it can
request values φM(#y), and use them if they are provided
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III The Finiteness Axiom

If α is an n-ary algorithm of M, then

M |= α("x) = w =⇒ there is an m such that "x ,w ∈ Gm("x)

and M!Gm("x) |= α("x) = w

In particular,
αM("x)↓ =⇒ α("x) ∈

⋃
m Gm("x)

“The computation” of αM("x) takes place within the
subalgebra of M generated by the input, and it is finite: take
m large enough so that every y used in “the computation” is
in Gm("x)
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All algorithms—really—satisfy these axioms

Explicit computation: αU("x) = tU["x ], where t("v) is a Φ-term

αU is the partial function computed a fixed recursive
(McCarthy) program A in the signature Φ (as in Lecture 1)

αU is computed by a register machine (or RAM, or Turing
machine or . . . ) from ΦU

αU is computed in Plotkin’s PCF above the algebra U

αU by computed in non-deterministic versions of any of these
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Axioms for elementary algorithms

I, Locality Axiom: An algorithm α of arity n of an algebra
M = (M, 0, 1,ΦM) assigns to each subalgebra U ⊆p M an
n-ary, strict partial function

αU : Un ⇀ U (U |= α(#x) = w ⇐⇒ αU(#x) = w)

II, Embedding Axiom: If U,V ⊆p M, and ι : U ! V is an
embedding, then

U |= α(#x) = w =⇒ V |= α(ι#x) = ιw (x1, . . . , xn,w ∈ U)

III, Finiteness Axiom:

M |= α(#x) = w =⇒ there is an m such that #x ,w ∈ Gm(#x)

and M"Gm(#x) |= α(#x) = w
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The embedding complexity of an algorithm

If α is an algorithm of M and M |= α("x) = w , set

c ι
α("x) = the least m such that M!Gm("x) |= α("x) = w

This is defined by the Finiteness Axiom

Intuitively, if m = c ι
α("x), then any implementation of α will

need to “consider” (use) some u ∈ M of depth m; and so it
will need at least m steps to construct this u from the input
using the primitives

If α("x) = tM["x ], then c ι
α("x) ≤ depth(t("v))

c ι
α is majorized by all usual time-complexity measures,

including the number of calls to the primitives
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The embedding complexity of a (computable) function

Fix f : Mn → M. An embedding ι : M!Gm("x) " M respects f at "x if

f ("x) ∈ Gm("x) & ι(f ("x)) = f (ι("x))

Lemma
If some algorithm computes f in M, then for each "x, there is some
m such that every embedding ι : M!Gm("x) " M respects f at "x

Proof Take m = c ι
α("x) for some α such that f = αM

c ι
f ("x) = the least m such that every ι : M!Gm("x) " M respects f at "x

If α computes f in M, then c ι
f ("x) ≤ c ι

α("x)

To show that m is an absolute lower bound for the
computation of f ("x) show that f ("x) /∈ Gm("x) ,

or construct ι : M!Gm("x) " M such that ιf ("x) $= f (ι"x)
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Outline of a proof

Theorem (van den Dries, ynm)

For the algebra M = (N, 0, 1,≤,+,−· , iq, rem) and the relation of
coprimeness x⊥⊥y,

a2 = 1 + 2b2 =⇒ c ι
⊥⊥(a, b) >

1

10
log log(a) (*)

So if α decides coprimeness in M, then (*) holds with c ι
α(a, b)

If 224m+6 ≤ a, then every X ∈ Gm(a, b) can be written uniquely as

X =
x0 + x1a + x2b

x3
with xi ∈ Z, |xi | ≤ 224m

and we can define ι : M!Gm(a, b) " M using λ = 1 + a!,

ι(X ) =
x0 + x1λa + x2λb

x3
, so (ι(a), ι(b)) = (λa,λb)
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M = (N, 0, 1, Parity, iq2,≤, +,−· , Presburger functions)

(van den Dries, ynm) If R(x) is one of the relations

x is prime, x is a perfect square, x is square free,

then for some r > 0 and infinitely many a, cι
R(a) > r log(a)

(van den Dries, ynm) For some r > 0 and infinitely many a, b,

c ι
⊥⊥(a, b) > r log(max(a, b))

(Joe Busch) If R(x , p) ⇐⇒ x is a square mod p,
then for some r > 0 and a sequence (an, pn) with pn →∞,

c ι
R(an, pn) > r log(pn)

In the last two examples, the results match up to a multiplicative
constant the known binary algorithms, so these are optimal
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Primality in M = (N, 0, 1, Parity, iq2,≤, +,−· , Presburger)

Theorem (van den Dries, ynm)

If Prime(p) ⇐⇒ p is prime, then in M, for some r > 0 and all
primes p,

c ι
Prime(p) > r log p (*)

So if α decides primality in M, then (*) holds with c ι
α(p)

If 22m+2 ≤ a, then every X ∈ Gm(a) can be written uniquely as

X =
x0 + x1a

2m
with |xi | ≤ 22m,

and we can define ι : M!Gm(a) " M by

ι(X ) =
x0 + x1λa

2m
, with λ = 1 + 2m, so ι(a) = λa
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Primality in binary

If Prime(p) ⇐⇒ p is prime, then in

Nb = (N, 0, 1,Parity, iq2, (x #→ 2x), (x #→ 2x + 1))

for some r > 0 and all primes p,

c ι
Prime(p) ≥ r log p (*)

This should follow trivially from number-theoretic results,
because it takes at least i applications of the primitives of Nb

to read i bits of the input; we should have r = 1

Theorem (Tao). For infinitely many primes p, if p′ is
constructed by changing any bit in the binary expansion of p
except the highest, then p′ is not prime

Tao found subsequently that this result is implicit in a paper
of Cohen and Selfridge from 1975 and explicitly noted in a
2000 paper by Sun, and he obtained more general results
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Non-uniform complexity

What if you are only interested in deciding R(!x) for n-bit numbers
(< 2n) and you are willing to use a different algorithm for each n?

Theorem (The lookup algorithm)

For each k-ary relation R on N and each n, there is an Nb-term
(with conditionals) tn(!v) of depth ≤ n = log2(2

n) which decides
R(!x) for all !x < 2n.

Non-uniform lower bounds are never greater than log

The best ones establish the optimality of the lookup algorithm
(and are most interesting when some uniform algorithm
matches the lookup up to a multiplicative constant)

They are mostly about “the size” of t(!v)

They do not follow from Axiom I – III

Yiannis N. Moschovakis: The axiomatic derivation of absolute lower bounds 17/22



Recursive (McCarthy) programs of M = (M , 0, 1, ΦM)

Explicit Φ-terms (with pn
i partial function variables)

A :≡ 0 | 1 | vi | φ(A1, . . . ,An) | pn
i (A1, . . . ,An)

| if (A0 = 0) then A1 else A2,

Recursive program (only "xi , p1, . . . , pK occur in each part Ai ):

A :






pA("x0) = A0

p1("x1) = A1
...

pK ("xK ) = AK

(A0 : the head, (A1, . . . ,AK ) : the body)

The elementary algorithms of M are expressed by recursive programs

(and they satisfy Axioms I – III)
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A non-uniform lower bound result for elementary algorithms

If α is the algorithm expressed by a recursive program in M, let

cs
α("x) = the number of calls to the primitives

made in the computation of α("x) ≥ c ι
α("x)

Theorem (van den Dries, ynm)

Let M = (N, 0, 1,≤,+,−· , iq, rem). There is some r > 0, such that
for all sufficiently large n and every M-elementary algorithm α which
decides coprimeness for all x , y < 2n, there exist a, b < 2n such that

cs
α(a, b) > r log2 n ≥ r log2 log2(max(a, b))

The proof is by the embedding method, but uses special properties
of recursive programs (the computation space)
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Logical extensions (a la Tarski)

A (Φ ∪Ψ)-algebra M is a logical extension of a Φ-algebra M if

(1) M ⊆ M, 0M = 0M, 1M = 1M

(2) For each φ ∈ Φ, φM = φM

(3) Every bijection ι : M !→ M which fixes 0, 1 can be extended
to a bijection ι : M !→ M such that for every ψ ∈ Ψ,

ψM(ι$x) = ιψM($x) ($x ∈ M
n
)

i.e., ι is an automorphism of the reduct (M, 0, 1,ΨM)

Random Access (and all other kinds of) Machines from ΦM,
Plotkin’s PCF over M, etc., are all faithfully represented by
recursive programs on logical extensions of M
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The persistence of embedding complexity

Theorem (van den Dries, Neeman, ynm)

If f : Mn → M and M is a logical extension of M, then

c ι
f (!x ,M) = c ι

f (!x ,M) (!x ∈ Mn)

This is why the embedding method gives the same lower
bounds (for a function f from specified primitives) for RAMs
and for recursive programs, even though the direct simulation
of RAMs by recursive programs has an overhead

The basic non-uniform results obtained by the embedding
method also extend to arbitrary logical extensions
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Back to sorting

Theorem
If ≤ is an ordering of a set A, A is a logical extension of
(A ∪ {0, 1}, 0, 1,≤) such that A∗ ⊆ A, and α is an elementary
algorithm of A which sorts the sequences in A∗, then

|u| = n =⇒ cs
α(u) ≥ log2(n!) ∼ n log2(n),

where cs
α(u) is the number of comparisons made by α in the

computation of sort(u)

This is proved by the classical, counting argument
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