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1 The broad outline of these talks

1. The basic idea of cardinality. (At the begin-
ning at least, make very few mathematical
assumptions of the audience.)

2. Slight modifications of this concept can lead
to a spectrum of notions which resemble the
notion of size or cardinality. (“Borel cardi-
nality” or “effective cardinality”, or even car-
dinality in L(R)).

3. Some of these notions are implicit in mathe-
matical activity outside set theory. (For in-
stance the work on dual of a group by George
W. Mackey, or scattered references to effec-
tive cardinality in the writing of Alain Connes.)

4. In the 80’s set theorists such as Harvey Fried-
man, Alexander Kechris, among others, be-
gan to suggest a way to explicate this idea
around the concept of Borel reducibility
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5. The outpouring of activity in this area over
the last 15 -20 years. Su Gao, Alexander
Kechris, Alain Louveau, Slawek Solecki, Si-
mon Thomas, Boban Velickovic, among many
others.

6. Dichotomy theorems for Borel equivalence re-
lations (for instance, the Harrington, Kechris,
and Louveau extension of Glimm-Effros).

7. Specific classification problems in mathemat-
ics (for instance the finite rank torsion free
abelian groups)

8. Dynamical methods to analyze equivalence
relations in the absence of reasonable dichotomy
theorems (for instance turbulence)

9. Interactions between the theory of countable
equivalence relations and the theory of orbit
equivalence
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2 Equivalence relations and invariants

Definition Let X be a set. E ⊂ X × X is
said to be an equivalence relation if

1. it is reflexive (xEx all x ∈ X)

2. symmetric (xEy implies yEx)

3. transitive (xEy along with yEz implies xEz).

Example 1. Let X be the set of people. Let
E be the equivalence relation of having the
same height.

2. Let X again be the set of all people. Let
E be the equivalence relation of having the
same mother.

3. Let X be the set of all planets. Let E be the
equivalence relation of being located in the
same universe.
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Definition For E an equivalence relation on
a set X , a complete invariant or classification
of E is a “reasonable” or “explicit” or “natural”
function

f : X → I

such that for all x1, x2 ∈ X we have

x1Ex2

if and only if

f (x1) = f (x2).

This really a pseudo-definition, held completely
hostage to how we best make sense of “reason-
able” or “explicit”.

Part of the story are the attempts to make this
idea more precise, and this in turn connects in
with variations on the concept of cardinality
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Example 1. For E the equivalence relation of
having the same height we clearly do have a
natural classification. Namely: Height mea-
sured in feet and inches. Assign to each x in
the set of people the height measured in feet
and inches as f (x).

2. For E the equivalence relation of having the
same mother, it would likewise seem that there
is a very explicit invariant: Assign to each
person x their mother as f (x).

3. For E being the equivalence relation of being
in the same universe, the situation is not so
clear.

We could try to for instance assign to each
planet the actual universe in which they live,
but it is not clear that this is doing much
more than assigning to each x the entire set
of all y for which xEy.
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3 Cardinality

Definition A function

f : X → Y

is an injection if for all x1, x2 ∈ X ,

x1 %= x2

implies
f (x1) %= f (x2).

In other words, an injection is a function which
sends distinct points to distinct images.

7



Example 1. Let X be the set of people and let
Y be the set of all human heads. Let

f : X → Y

assign to each x its head. This is presumably
(barring some very unusual case of siamese
twins) an injection.

2. Let X be the set of all people who have ever
lived and let

f : X → X

assign to each X its mother. (Here we are
ignoring minor chicken-egg questions about
the first ever mother). This is clearly not an
injection. There are cases of distinct people
having the same mother.
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Definition A function

f : X → Y

is a surjection if for each y ∈ Y there is some
x ∈ X with

f (x) = y.

A function which is both injective and surjective
is called a bijection.

In rough terms, a bijection between X and Y
is a way of marrying all the X ’s off with all
the Y ’s with no unmarried Y ’s left over. (Here
assuming no polygamy allowed).

9



Definition Given two sets X and Y , we say
that the cardinality of X is less than the car-
dinality of Y , written

|X| ≤ |Y |,

if there is an injection

f : X → Y.

Theorem 3.1 (Schroeder-Bernstein) If

|X| ≤ |Y |

and
|Y | ≤ |X|,

then there is a bijection between the two sets.

Intuitively not so outrageous. If we say that
a set has size 4, and count of the elements 1,
2, 3, 4, we are implicitly placing that set in a
bijection with the set {1, 2, 3, 4}.
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4 The axiom of choice

Definition A set α is an ordinal if:

1. it is transitive – β ∈ α along with γ ∈ β
implies γ ∈ α; and

2. it is linearly ordered by ∈ – if β, γ are both
in α, then

β ∈ γ,

or
γ ∈ β,

or
γ = β.
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∅, the set having no members, which set theo-
rists customarily identify with 0.

1 = {0}, the set whose only member is 0.
2 = {0, 1}, gives the usual set theoretical def-

inition of 2. Then we keep going with 3 =
{0, 1, 2}, 4 = {0, 1, 2, 3}, and so on.

We reach the first infinite ordinal with the set
of natural numbers:

ω = {0, 1, 2, ...}.

This again leads to a whole new ladder of ordi-
nals:

ω + 1 = {0, 1, 2, ...,ω},

ω + 2 = {0, 1, 2, ...,ω,ω + 1},

ω + 3 = {0, 1, 2, ...,ω,ω + 1,ω + 2},

and onwards:

ω + ω = {0, 1, 2, ...,ω,ω + 1,ω + 2, ...},

ω+ω+1 = {0, 1, 2, ...,ω,ω+1,ω+2, ...,ω+ω},

ω×ω = {0, 1, 2, ...,ω,ω+1, ...ω+ω, ...ω+ω+ω, ...},

ad infinitum.
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Lemma 4.1 The ordinals themselves are lin-
early ordered: If β, γ are both ordinals, then

β ∈ γ,

or
γ ∈ β,

or
γ = β.

The Axiom of Choice: (In effect) Every set
can be placed in a bijection with some ordinal.
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Definition An ordinal is said to be a cardinal
if it cannot be placed in a bijection with any
smaller ordinal.

So for instance, ω (or ℵ0 as it is sometimes
called in this context) is indeed a cardinal: The
smaller ordinals are finite.

But not ω + ω: Define

f : ω + ω → ω,

n )→ 2n,

ω + n )→ 2n + 1.
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The consequences of all this for the theory of
cardinality:

Every set can be placed in a bijection
with an ordinal.

The cardinals are a linearly ordered set.

This is parallel to a form of utilitarianism:
There is only one good (human happiness) and
that good can be compared in order and amount.

There is only one notion of “size” and the car-
dinals can be compared in order.
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5 Variations on the notion of cardinality

Recall that we set |X| ≤ |Y | if there is an in-
jection from X to Y .

However, it does make sense to look at paral-
lel definitions for classes of injections which are
more narrow than simply the class of all injec-
tions.

Fix Γ some class of functions (for instance, all
Borel functions, all functions in L(R)).

We might want to say that the Γ-cardinality
of X is less than equal to that of Y if there is
some injection f ∈ Γ with

f : X → Y.
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This should be compared to the problem of
classifying an equivalence relation.

Definition For E and equivalence relation on
X , and x ∈ X , let [x]E be the set of all y ∈ X
with

xEy.

Then let X/E be the set of all equivalence classes:

{[x]E : x ∈ X}.

For instance, if X is the set of all people, and
E is the equivalence relation of having the same
height, then

[Greg]E
would be the set of all people who are 5’6” tall.

X/E would consist of the set of all “group-
ings” of people where they are categorized strictly
by height.
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Then a classification of E would in some form
be an “appropriate” function

f : X → I

which induces an injection

f̂ : X/E → I

via letting
f̂ (C)

take the value
f (y)

for any y in the equivalence class C.

The assumption xEy ⇒ f (x) = f (y) ensures
f̂ is well defined.

The assumption f (x) = f (y) ⇒ xEy ensures
f̂ is an injection.

However it remains to resolve the definition of
what we should count as an “appropriate” or
reasonable class of possible functions f .
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6 The ideas of G. W. Mackey

One particular approach to theory of what should
count as reasonable functions for the point of
view of classification has been suggested by work
of Mackey on group representations dating back
to the middle of the last century.

The story now becomes considerably more math-
ematical. I will start first by describing the
problem Mackey considered, and only then the
explication of reasonable his work suggests.

Definition For H a Hilbert space, U(H) de-
notes the group of unitary operators on H .
That is to say, the set of all linear bijections

T : H → H

such that for all u, v ∈ H

〈T (v), T (u)〉 = 〈u, v〉.
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Definition For G a countable group, a unitary
representation of G (on the Hilbert space H)
is a homomorphism

ϕ : G → U(H)

g )→ ϕg.

We then say that a representation is irreducible
if the only closed subspaces of H which are in-
variant under

{ϕg : g ∈ G}

are the trivial ones: 0 and H .

Let Irr(G,H) denote the collection of irreducible
unitary representations of G on H .
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Definition Two unitary representations

ϕ : G → U(Hϕ)

ψ : G → U(Hψ)

are equivalent, written

ϕ ∼= ψ,

if they are unitarily conjugate in the sense that

there is a unitary isomorphism

T : Hϕ → Hψ

such that at every g ∈ G

ϕg = T ◦ ψg ◦ T−1.
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Theorem 6.1 If ϕ : Z → U(H) is an irre-
ducible representation, then:

1. H is one dimensional; and

2. there is some z ∈ C such that at every
' ∈ Z we have

ϕ'(v) = z' · v

all v ∈ H; and

3. two distinct irreducible representations are
equivalent if and only if they have the same
z ∈ C associated to them.

Thus we obtain a complete classification of ir-
reducible representations of Z by their associ-
ated z ∈ C. It is like we can view Irr(Z, H)/ ∼=
as a subset of C.

It turns out that a similar, though somewhat
more complicated, classification can be given for
any abelian group.

22



In broad terms Mackey was led to ask: For
which groups G can we reasonably classify the
collection of equivalence classes

Irr(G, H)/ ∼=

by points in some concrete space such as C?

Before even groping towards an answer, one
might first want to make the question precise.

Mackey did make the question precise, but this
in turn requires the introduction of ideas lying
at the foundations of descriptive set theory.
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7 Polish spaces and Borel sets

Definition A topological space is said to be
Polish if it is separable and it admits a complete
compatible metric.

We then say that the Borel sets are those ap-
pearing in the smallest σ-algebra containing the
open sets.

A set X equipped with a σ-algebra is said to be
a standard Borel space if there is some choice
of a Polish topology giving rise to that σ-algebra
as its collection of Borel sets.

A function between two Polish spaces,

f : X → Y,

is said to be Borel if for any Borel B ⊂ Y the
pullback f−1[B] is Borel.
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Some examples

1. Any separable Hilbert space is Polish.

2. If H is a separable Hilbert space, then U(H)
is a closed subgroup of its isometry group and
hence Polish.

3. If H is a separable Hilbert space and G is a
countable group, then

∏

G

U(H)

is a countable product of Polish spaces and
hence Polish.

4. Then the collection of unitary representations
of G is a closed subspace of

∏
G U(H), and

hence Polish.

5. Finally it is a slightly non-trivial fact that
the collection of irreducible representations is
a Gδ subset of the collection of all represen-
tations, and hence Polish.
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Definition (Mackey) An equivalence relation
E on a Polish space X is smooth if there is a
another Polish space Y and a Borel function

f : X → Y

such that for all x1, x2 ∈ X we have

f (x1) = f (x2)

if and only if
x1Ex2.

A countable group G has smooth dual if for
any separable Hilbert space H , the equivalence
relation ∼= on Irr(G,H) is smooth.

Question (Mackey, in effect) Which groups
have smooth dual?
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There are various answers in the literature to
Mackey’s question, including Glimm’s solution
of the Mackey conjecture, which applies not
just to discrete groups but more generally lcsc
topological groups.

In the case of discrete groups there is a com-
pletely algebraic characterization.

Theorem 7.1 (Thoma) A countable group G
has smooth dual if and only if it has an abelian
subgroup with finite index.
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There are some very simple, from the point of
view of Borel complexity, non-smooth equiva-
lence relations.

Definition Equip

2N =df

∏

N

{0, 1}

with the product topology.

Let E0 be the equivalence relation of eventual
agreement on 2N.

Lemma 7.2 E0 is not smooth.

E0 itself is Fσ as a subset of 2N. The com-
plexity of its classification problem has little do
with any complexity it might have as a subset
of 2N × 2N.
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It turns out that at the base of Glimm’s proof
of the Mackey conjecture is a theorem to the
effect that under certain circumstances E0 is the
canonical obstruction to smoothness.

This was generalized by Ed Effros.

The final and ultimate generalization to the
abstract theory of Borel equivalence relations
was obtained by Leo Harrington, Alexander Kechris,
and Alain Louveau in the late 1980’s and in turn
sparked a new direction of research in descrip-
tive set theory.
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1 Recall

Definition The cardinality of X is less than
or equal to Y ,

|X| ≤ |Y |,

if there is an injection from X to Y .

This might suggest a notion of “cardinality”
where we restrict our attention to some restricted
class of injections.

This in turn could relate to the idea that an
equivalence relation E on a set X is in some
sense classifiable if there is a “reasonably nice”
or “natural” or “explicit” function

f : X → I

which induces (via x1Ex2 ⇔ f (x1) = f (x2))
an injection

f̂ : X/E → I.
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In the context of unitary group representation
a definition exactly along these lines was pro-
posed by G. W. Mackey.

Definition (Mackey) An equivalence relation
E on a Polish space X is smooth if there is a
Polish space Y and a Borel function f : X → Y
such that

x1Ex2 ⇔ f (x1) = f (x2).

In the way of context and background

1. Borel functions are considered by many math-
ematicians to be basic and uncontroversial,
and concrete in a way that a function sum-
moned in to existence by appeal to the axiom
of choice would not.

2. Many classification problems can be cast in
the form of understanding an equivalence re-
lation on a Polish space
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2 The entry of descriptive set theorists

In the late 80’s two pivotal papers suggested a
variation and generalization of Mackey’s defini-
tion.

A Borel Reducibility Theory for Classes of
Countable Structures, H. Friedman and L. Stan-
ley, The Journal of Symbolic Logic, Vol.
54, No. 3 (Sep., 1989), pp. 894-914

A Glimm-Effros Dichotomy for Borel Equiv-
alence Relations, L. A. Harrington, A. S. Kechris
and A. Louveau, Journal of the American

Mathematical Society, Vol. 3, No. 4 (Oct.,
1990), pp. 903-928

Neither paper referenced the other, and yet
they used the exact same terminology and no-
tation to introduce a new concept.
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Definition Given equivalence relations E and
F on X and Y we say that E is Borel reducible
to F , written

E ≤B F,

if there is a Borel function

f : X → Y

such that

x1Ex2 ⇔ f (x1)Ff (x2).

In other words, the Borel function f induces
an injection

f̂ : X/E → Y/F.

The perspective of Friedman and Stanley was
to compare various classes of countable struc-
tures under the ordering ≤B. The Harrington,
Kechris, Louveau paper instead generalized ear-
lier work of Glimm and Effros in foundational
issues involving the theory of unitary group rep-
resentations.

5



Definition Let E0 be the equivalence relation
of eventual agreement on 2N. For X a Polish
space let id(X) be the equivalence relation of
equality on X .

Thus in the above notation we can recast Mackey’s
definition of smooth: An equivalence relation E
is smooth if for some Polish X we have

E ≤B id(X).

It turns out that for any uncountable Polish
space X we have

id(R) ≤B id(X)

and
id(X) ≤B id(R).
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Definition An equivalence relation E on Pol-
ish X is Borel if it is Borel as a subset of X×X .

Theorem 2.1 (Harrington, Kechris, Louveau)
Let E be a Borel equivalence relation. Then
exactly one of the following two conditions
holds:

1. E ≤B id(R);

2. E0 ≤B E.

Moreover 1. is equivalent to E being smooth.

This breakthrough result, this archetypal di-
chotomy theorem, suggested the possibility of
understanding the structure of the Borel equiv-
alence relations up to Borel reducibility, which
in turn has become a major project in the last
twenty years, which I will survey on Friday.
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3 Examples of Borel reducibility in mathematical practice

It turns out that many classical, or near classi-
cal, theorems can be recast in the language of
Borel reducibility.

Example Let (X, d) be a complete, separable,
metric space. Let K(X) be the compact subsets
of X – equipped with the metric D(K1,K2)
equals

supx∈K1
d(x,K2) + supx∈K2

d(x,K1),

where d(x,K) = infz∈Kd(x, z).

Let E be the equivalence relation of isome-
try on K(X). Then Gromov showed that E is
smooth. In other words,

E ≤B id(R).
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Example Let H be a separable Hilbert space
and U(H) the group of unitary operators of H .

Let ∼= be the equivalence relation of conjugacy
on U(H), which is in effect the isomorphism
relation considered in the last talk: T1

∼= T2 if

∃S ∈ U(H)(S ◦ T1 ◦ S−1 = T2).

1. In the case that H is finite dimensional, every
T ∈ U(H) can be diagonalized. This gives a
reduction of ∼= to the equality of finite subsets
of C, and hence a proof that ∼= is smooth.

2. In the case that H is infinite dimensional,
the situation is considerably more subtle, but
the spectral theorem allows us to write each
element of U(H) as a kind of direct integral
of rotations.
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Definition Let S1 be the circle:

{z ∈ C : |z| = 1}

in the obvious, and compact, topology. Let
P (S1) be the collection of probability mea-
sures on S1 – this forms a Polish space in the
topology it inherits from being a closed sub-
set C(S1)∗ in the weak star topology (via the
Riesz representation theorem). For µ, ν ∈
P (S1), set µ ∼ ν if they have the same null
sets.

It then follows from the spectral theorem that
∼=≤B∼ .

The spectral theorem is often considered, though
without the use of the language of Borel re-
ducibility, to provide a classification of the
infinite dimensional unitary operators up to
conjugacy.
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Example For S a countable set, may identify
P(S) with

2S =
∏

S

{0, 1}

and thus view it as a compact Polish space in
the product topology.

A torsion free abelian (TFA) group A is said
to be of rank ≤ n if there are a1, a2, ...an ∈ A
such that every b ∈ A has some m ∈ N with
m · b ∈ 〈a1, ..., an〉.

Up to isomorphism, the rank ≤ n TFA groups
are exactly the subgroups of (Qn, +), and thus
form a Polish space as a subset of P(Qn).

Let ∼=n be the isomorphism relation on sub-
groups of (Qn, +). In the language of Borel
reducibility a celebrated classification theorem
can be rephrased as:

Theorem 3.1 (Baer) ∼=1≤B E0.
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Example Let Hom+([0, 1]) be the orientation
preserving homeomorphisms of the closed unit
interval. In the sup norm metric, this forms a
Polish space.

Let ∼=Hom+([0,1]) be the equivalence relation of
conjugacy.

There is a kind of folklore observation to the
effect that every element of Hom+([0, 1]) can be
classified symbolically, by recording the max-
imal open intervals on which it is increasing,
decreasing, or the identity.

This translates into classifying

Hom+([0, 1])/ ∼=Hom+([0,1])

by countable linear orderings with equipped with
unary predicates Pinc and Pdec up to isomor-
phism. Those in turn can be viewed as forming
a closed subset of 2N×N × 2N × 2N, and we
obtain

∼=Hom+([0,1])≤B
∼=2N×N×2N×2N .
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4 The space of countable models

Definition LetL be a countable language. Then
Mod(L) is the set of all L structures with un-
derlying set N.

Definition Let τqf be the topology with basic
open sets of the form

{M ∈ Mod(L) : M |= ϕ(#a)}

where ϕ(#x) is quantifier free and #a ∈ N<∞.

τfo is defined in a parallel fashion, except with
ϕ(#x) ranging over first order formulas, and more
generally for F ⊂ Lω1,ω a countable fragment
we define τF similarly with ϕ(#x) ∈ F .

It is not much more than processing the defi-
nitions to show τqf is Polish. For instance for L
consisting of a single binary relation, we obtain
a natural isomorphism with 2N×N. It can be
shown, however, that the others are Polish, and
all these examples have the same Borel struc-
ture.
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Definition For a sentence σ ∈ Lω1,ω we let
∼=σ be isomorphism on Mod(σ), the set of M ∈
Mod(L) with M |= σ.

∼=σ is universal for countable structures if
given any countable language L′ we have

∼=Mod(L′)≤B
∼=σ .

Theorem 4.1 (Friedman, Stanley) The fol-
lowing are universal for countable structures:
Isomorphism of countable trees, countable fields,
and countable linear orderings. Isomorphism
of countable torsion abelian groups is not uni-
versal for countable structures.

One tends to obtain universality1 for such a
class of countable structures , except when there
is an “obvious” reason why this must fail.

For instance, if the isomorphism relation is “es-
sentially countable”.

1The major being torsion abelian groups. The case for torsion free abelian groups remains puzzlingly open, despite

strong indicators it should be universal
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5 Essentially countable equivalence relations

Definition A Borel equivalence relation F on
Polish Y is countable if every equivalence class
is countable.

An equivalence relation E on a Polish space is
essentially countable if it is Borel reducible to
a countable equivalence relation.

An equivalence relation E is universal for es-
sentially countable if it is essentially countable
and for any other countable Borel equivalence
F we have F ≤B E.

Theorem 5.1 (Jackson, Kechris, Louveau)
Universal essentially countable equivalence re-
lations exist. In fact, for F2 the free group on
two generators, the orbit equivalence relation
of F2 on 2F2 is essentially countable.
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Fact 5.2 If an equivalence relation E is es-
sentially countable, then for some2 countable
languages L we have E ≤B

∼=Mod(L).

Theorem 5.3 (Kechris) If G is a locally com-
pact Polish group acting in a Borel manner
on a Polish space X, then the resulting equiv-
alence relation is essentially countable.

In the context of isomorphism types of classes
of countable structures, one can characterize when
an equivalence relation is essentially countable
in model theoretic terms.

Roughly speaking a class of countable struc-
tures with an appropriately “finite character”
will be essentially countable.

In particular, if M ∈ Mod(L) satisfying σ is
finitely generated, then ∼=σ is essentially count-
able.

2In fact, “most”
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Theorem 5.4 (Thomas, Velickovic) Isomor-
phism of finitely generated groups is univer-
sal for essentially countable.

As in the case of general countable structures,
the tendency is for classes of essentially count-
able structures to be universal unless there is
some relatively obvious obstruction.

In a paper with Kechris, we made a rather
arrogant, reckless, and totally unsubstantiated,
conjecture that isomorphism for rank two tor-
sion free abelian groups would be universal for
essentially countable.

Since E0 is not universal for essentially count-
able, this was hoped to explain the inability of
abelian group theorists to find a satisfactory
classification for the higher finite rank torsion
free abelian groups.
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6 The saga of finite rank torsion free abelian groups

Although many well known mathematical clas-
sification theorems have a direct consequence for
the theory of Borel reducibility, a major moti-
vation has been to use the theory of Borel re-
ducibility to explicate basic obstructions to the
classification of certain classes of isomorphism.

One of the most clear cut cases has been the
situation with finite rank torsion free abelian
groups.

Recall that ∼=n is being used to describe the
isomorphism relation on rank ≤ n torsion free
abelian groups, where we provide a model of the
full set of isomorphism types by considering the
subgroups of Qn.

Theorem 6.1 (Baer, implicitly, 1937)
∼=1≤B E0.
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A kind of mathematically precise justification
for the vague feeling that rank two torsion free
abelian groups did not admit a similar classifi-
cation was provided by:

Theorem 6.2 (Hjorth, 1998) ∼=2 is not Borel
reducible to E0.

In some sense this addressed the soft philo-
sophical motivation behind the conjecture with
Kechris, but not the hard mathematical formu-
lation with which it faced the world. This was
left to Simon Thomas, who in a technically bril-
liant sequence of papers showed:

Theorem 6.3 (Thomas, 2002, 2004) At ev-
ery n

∼=n<B
∼=n+1 .
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In general, and this lies at the heart of the
technical mountains Thomas had to overcome,
almost all the results to show that one essen-
tially countable equivalence relation is not Borel
reducible to another rely on techniques coming
entirely outside logic, such as geometric group
theory, von Neumann algebras, and the rigidity
theory one finds in the work of Margulis and
Zimmer.

In recent years the work of logicians in this
area has begun to communicate and interact
with mathematicians in quite diverse fields.

However, it has gradually become clear that
many of the problems we would most dearly
like to solve will not be solvable by the measure
theoretic based techniques being used in these
other fields. For instance....
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Question Let G be a countable nilpotent group
acting in a Borel manner on a Polish space with
induced orbit equivalence relation EG. Must we
have

EG ≤B E0?

The problem here is that with respect to any
measure we will have EG ≤B E0 on some conull
set, and thus measure will not be a suitable
method for proving the existence of a counterex-
ample. In an enormously challenging and strik-
ingly original fifty page manuscript, Su Gao and
Steve Jackson showed EG ≤B E0 when G is
abelian.

Many of these issues relate to open problems
in the theory of Borel dichotomy theorems and
the global structure of the Borel equivalence re-
lations under ≤B.3

3Next talk
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7 Classification by countable structures

Definition An equivalence relation E on a Pol-
ish space X is classifiable by countable struc-
tures if there is a countable language L and a
Borel function

f : X → Mod(L)

such that for all x1, x2 ∈ X

x1Ex2 ⇔ f (x1) ∼= f (x2).

Here one might compare algebraic topology,
where algebraic objects considered up to iso-
morphism are assigned as invariants for classes
of topological spaces considered up to homeo-
morphism.

Again it turns out that some well known classi-
fication theorems have the direct consequence of
showing that some naturally occurring equiva-
lence relation admits classification by countable
structures.
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Example Recall ∼=Hom+([0,1]) as the isomor-
phism relation on orientation measure preserv-
ing transformations of the closed unit interval.
Then the folklore observation mentioned from
before in particular shows that ∼=Hom+([0,1]) is
classifiable by countable structures.

Example A Stone space is a compact zero di-
mensional Hausdorff space. There is a fixed
topological space X (for instance, the Hilbert
cube), such that every separable Stone space
can be realized as a compact subspace of X .
Then S(X), the set of all such subspaces, forms
a standard Borel space, and we can let ∼=S(X)
be the homeomorphism relation on elements of
S(X).

Stone duality, the classification of Stone spaces
by their associated Boolean algebras, in particu-
lar shows that ∼=S(X) is classifiable by countable
structures.

23



Example For λ the Lebesgue measure on [0, 1],
let M∞ be the group of measure preserving
transformations of ([0, 1]λ) (considered up to
equality a.e.).

A measure preserving transformation T is said
to be discrete spectrum if L2([0, 1],λ) is spanned
by eigenvalues for the induced unitary operator

UT : f "→ f ◦ T−1.

It follows from the work of Halmos and von
Neumann that such transformations considered
up to conjugacy in M∞ are classifiable by count-
able structures.
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Example The search for complete algebraic in-
variants has recurrent theme in the study of C∗-
algebras and topological dynamics.

Consider minimal (no non-trivial closed invari-
ant sets) homeomorphisms of 2N

Let ∼C(2N) be conjugacy of orbit equivalence
relations: Thus

f1 ∼C(2N) f2

if there is some homeomorphism g conjugating
their orbits:

∀!x(g[{f "
1(!x) : " ∈ Z}] = {f "

2(g(!x)) : " ∈ Z}).

Giordano, Putnam, and Skau produce count-
able ordered abelian groups which, considered
up to isomorphism, act as complete invariants.

Their theorem implicitly shows ∼C(2N) to be
classifiable by countable structures.
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8 Turbulence

This a theory, or rather a body of techniques,
explicitly fashioned to show when equivalence
relations are not classifiable by countable struc-
tures.

Definition Let G be a Polish group acting con-
tinuously on a Polish space X . For V an open
neighborhood of 1G, U an open set containing
x, we let

O(x, U, V ),

the U-V -local orbit, be the set of all x̂ ∈ [x]G
such that there is a finite sequence

(xi)i≤k ⊂ U

such that
x0 = x, xk = x̂,

and each
xi+1 ∈ V · xi.
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Definition Let G be a Polish group acting con-
tinuously on a Polish space X . The action is
said to be turbulent if:

1. every orbit is dense; and

2. every orbit is meager; and

3. for x ∈ X , the local orbits of x are all some-
where dense; that is to say, if V is an open
neighborhood of 1G, U is an open set contain-
ing x, then closure of O(x, U, V ) contains an
open set.

Theorem 8.1 (Hjorth) Let G be a Polish group
acting continuously on a Polish space X with
induced orbit equivalence relation EG.

If G acts turbulently on X, then EG is not
classifiable by countable structures.

This has been the engine behind a number of
anti-classification theorems.
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Example (Kechris, Sofronidis) Infinite dimen-
sional unitary operators considered up to uni-
tary conjugacy do not admit classification by
countable structures.

Example (Hjorth) The homeomorphism group
of the unit square,

Hom([0, 1]2),

considered up to homeomorphism does not ad-
mit classification by countable structures.

Example (Gao) Countable metric spaces up to
homeomorphism does not admit classification
by countable structures.

Example (Törnquist) Measure preserving ac-
tions of F2 up to orbit equivalence do not admit
classification by countable structures.
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1 The classical theory of Borel sets

Definition A space is Polish if it is separable
and admits a complete metric.

We then say that the Borel sets are those ap-
pearing in the smallest σ-algebra containing the
open sets.

A set X equipped with a σ-algebra is said to be
a standard Borel space if there is some choice
of a Polish topology giving rise to that σ-algebra
as its collection of Borel sets.

A function between two Polish spaces,

f : X → Y,

is said to be Borel if for any Borel B ⊂ Y the
pullback f−1[B] is Borel.

We have gone through a number of examples
in the first two talks. There is a sense in which
Polish spaces are ubiquitous.
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The notion of standard Borel space is slightly
more subtle.

However it turns out that there are many ex-
amples of standard Borel spaces which possess
a canonical Borel structure, but no canonical
Polish topology.1

Theorem 1.1 (Classical) If X is a Polish
space and B ⊂ X is a Borel set, then B
(equipped in the σ-algebra of Borel subsets
from the point of view of X) is standard Borel.

Theorem 1.2 (Classical; the “perfect set the-
orem”) If X is a Polish space and B ⊂ X is
a Borel set, then exactly one of:

1. B is countable; or

2. B contains a homeomorphic copy of Can-
tor space, 2N (and hence has size 2ℵ0).

1Indeed, since we are mostly only considering Polish spaces up to questions of Borel structure, it is natural to discount the
specifics of the Polish topology involved.
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Theorem 1.3 (Classical) If X is a standard
Borel space, then the cardinality of X is one
of {1, 2, 3, ....,ℵ0, 2

ℵ0}.

Moreover!

Theorem 1.4 (Classical) Any two standard
Borel spaces of the same cardinality are Borel
isomorphic.

Here we say that X and Y are Borel isomor-
phic if there is a Borel bijection

f : X → Y

whose inverse is Borel.2

Thus, as sets equipped with their σ-algebras
they are isomorphic.

There is a similar theorem for quotients of the
form X/E, E a Borel equivalence relation.

2In fact it is a classical theorem that any Borel bijection must have a Borel inverse
4



2 The analogues for Borel equivalence relations

Definition If X is a standard Borel space, an
equivalence relation E on X is Borel if it ap-
pears in the σ-algebra on X × X generated by
the rectangles A×B for A and B Borel subsets
of X .

Theorem 2.1 (Silver, 1980) Let X is a stan-
dard Borel space and assume E is a Borel
equivalence relation on X. Then the cardi-
nality of X/E is one of

{1, 2, 3, ....,ℵ0, 2
ℵ0}.

However here there is no moreover.

In terms of Borel structure, and the situa-
tion when X/E is uncountable, there are vastly
many possibilities at the level of Borel structure.

5



Definition Given equivalence relations E and
F on standard Borel X and Y we say that E is
Borel reducible to F , written

E ≤B F,

if there is a Borel function

f : X → Y

such that

x1Ex2 ⇔ f (x1)Ff (x2).

We say that the Borel cardinality X/E is
less than the Borel cardinality of Y/F , writ-
ten

E <B F,

if there is a Borel reduction of E to F but no
Borel reduction of F to E.

In the language Borel reducibility, there is a
sharper version of Silver’s theorem, which he
also proved without describing it in these terms.
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Theorem 2.2 (Silver) Let E be a Borel equiv-
alence relation on a standard Borel space.
Then exactly one of:

1. E ≤B id(N); or

2. id(R) ≤B E.

One of the major events in the prehistory of
the subject is Leo Harrington’s alternate and far
shorter proof of Silver’s result using a technol-
ogy called Gandy-Harrington forcing.

Building on this technology with the combina-
torics of an earlier argument due to Ed Effros,
the whole field of Borel equivalence relations was
framed by the landmark theorem of Harrington,
Kechris, and Louveau.
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Recall that E0 is the equivalence relation of
eventual agreement on infinite binary sequences.

Theorem 2.3 (Harrington, Kechris, Louveau,
1990) Let E be a Borel equivalence relation
on a standard Borel space. Then exactly one
of:

1. E ≤B id(R); or

2. E0 ≤B E.

This raised the fledgling hope that we might be
able to provide a kind of structure theorem for
the Borel equivalence relations under ≤B, but
before recounting this part of the tale I wish to
describe the analogies which exist in the theory
of L(R) cardinality.
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3 Cardinality in L(R)

Definition L(R) is the smallest model of ZF
containing the reals and the ordinals.

Although this quick formulation finesses out of
the need to provide any set theoretical formal-
ities, it rather disguises the true nature of this
inner model.

It turns out that L(R) can be defined by sim-
ply closing the reals under certain kinds of highly
“constructive” operations carried out through
transfinite length along the ordinals. It should
possibly be thought of as the collection of sets
which can be defined “internally” or “primi-
tively” from the reals and the ordinals.

In this talk I want to think of it as a class
inner model which contains anything one might
think of as being a necessary consequence of the
existence of the reals.
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It also turns out that ZFC is incapable of de-
ciding even the most basic questions about the
theory and structure of L(R).

On the other hand, if L(R) satisfies AD, or
the “Axiom of Determinancy” then almost all
those ambiguities are resolved.

Following work of work of Martin, Steel, Woodin,
and others, we now know that any reasonably
large “large cardinal assumption” implies L(R) |=
AD.

This along with the fact that L(R) |= AD
has many regularity properties displayed by the
Borel sets (such as the perfect set theorem for
arbitrary sets in standard Borel spaces, all sets
of reals Lebesgue measurable) has convinced many
set theorists, though not all, that this is the right
assumption under which to explore its structure.
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I am not going to ask the audience to necessar-
ily accept this perspective. I am simply going
to examine the cardinality theory of L(R) as a
kind of idealization of the theory of Borel cardi-
nality.

From now on in this part I will as-
sume

L(R) |= AD.

Definition For A and B in L(R), we say that
the L(R) cardinality of A is less than or equal
to the L(R) cardinality of B, written

|A|L(R) ≤ |B|L(R),

if there is an injection in L(R) from A to B.
Similarly

|A|L(R) < |B|L(R),

if there is an injection in L(R) from A to B but
not from B to A.
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Since the axiom of choice fails inside L(R),
there is no reason to imagine that the L(R) car-
dinals will be linearly ordered, and in fact there
are incomparable cardinals inside L(R).

It turns out that the theory of L(R) cardinal-
ity simulates and extends the theory of Borel
cardinality.

In every significant case, the proof that

E <B F

has also given a proof that

|X/E|L(R) < |Y/F |L(R).

This is partially explained by:

Fact 3.1 For E and F Borel equivalence re-
lations one has

E ≤L(R) F

if and only if

|R/E|L(R) ≤ |R/F |L(R).
12



The two dichotomy theorems for Borel equiv-
alence relations allow a kind of extension to the
cardinality theory of L(R).

Theorem 3.2 (Woodin) Let A ∈ L(R). Then
exactly one of the following two things must
happen:

1. |A|L(R) ≤ |α|L(R), some ordinal α; or

2. |R|L(R) ≤ |A|L(R).

Theorem 3.3 (Hjorth) Let A ∈ L(R). Then
exactly one of the following two things must
happen:

1. |A|L(R) ≤ |P(α)|L(R), some ordinal α; or

2. |P(ω)/Fin|L(R) ≤ |A|L(R).

Here |P(ω)/Fin|L(R) = |2N/E0|L(R), thus pro-
viding an analogy with Harrington-Kechris-Louveau.
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4 Further structure

Definition Let E1 be the equivalence relation
of eventual agreement on RN. For !x, !y ∈ (2N)N,
set !x(E0)

N!y if at every coordinate xnE0yn.

Theorem 4.1 (Kechris, Louveau) Assume

E ≤B E1.

Then exactly one of:

1. E ≤B E0; or

2. E1 ≤B E.

Theorem 4.2 (Hjorth, Kechris) Assume

E ≤B (E0)
N.

Then exactly one of:

1. E ≤B E0; or

2. (E0)
N ≤B E.
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Admittedly these are far more local in nature.

These are the only immediate successors to E0
which we have established.

There is an entire spectrum of examples, con-
structed by Ilijas Farah using ideas from Banach
space theory, for which it seems natural to sup-
pose they must be minimal above E0.

However this remains open, due to problems
in the theory of countable Borel equivalence re-
lations which appear unattainable using current
techniques.

Moreover Alexander Kechris and Alain Lou-
veau have shown that there is a sense in which
there are no more global dichotomy theorems
after Harrington, Kechris, Louveau.
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5 Anti-structure

Theorem 5.1 (Louveau, Veličković)
There are continuum many many ≤B in-

comparable Borel equivalence relations.3

In fact we can embed P(N) into ≤B:

There is an assignment

S "→ ES

of Borel equivalence relations to subsets of N

such that for all S, T ⊂ N we have that T \S
is finite if and only if

ET ≤B ES.

Thus there is nothing like the kind of struc-
ture for Borel cardinality that one finds with
the Wadge degrees.

3This first part may have been proved earlier by Hugh Woodin in unpublished work.
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Theorem 5.2 (Kechris, Louveau) There is
no Borel E >B E0 with the property that for
all other Borel F we always have one of:

1. F ≤B E; or

2. E ≤B F .

Two key facts: First of all, Kechris and Lou-
veau showed that E1 is not Borel reducible to
any EG arising as a result of a continuous Pol-
ish group action4, and secondly Leo Harrington
showed that the Borel EG’s of this form are un-
bounded with respect to Borel reducibility:

Theorem 5.3 (Harrington) There is a col-
lection {Eα : α ∈ ω} of Borel equivalence
relations such:

1. Each Eα arises as a result of the continu-
ous Polish group action on a Polish space;

2. For any Borel F there will be some α with
Eα not Borel reducible to F .

4A theoreom due to Howard Becker and Alexander Kechris theorem on changing topologies in the dynamical context shows
that there is no basically no difference between equivalence relations induced by continuous actions and induced by Borel
actions. However it is important that the responsible group be a Polish group – there are certain traces of rigidity for Polish
groups, whereas Borel actions of Borel groups can induce any Borel equivalence relation one cares to name

17



To sketch a proof by contradiction of Kechris
and Louveau’s result, suppose E was a Borel
equivalence relation with the property that for
all Borel F we have one of:

1. F ≤B E; or

2. E ≤B F .

Referring back to Harrington’s theorem, there
will be some α with Eα not Borel reducible to
E.

Thus since 1 fails for F = Eα we must have
E <B Eα

But E1 is not Borel reducible to any Polish
group action, and hence using the same reason-
ing we must have E <B E1.

Which by the Kechris-Louveau dichotomy the-
orem yields E ≤B E0.
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However this proof prompts the following re-
sponse:

Question Let E be a Borel equivalence rela-
tion. Must we have one of the following:

1. E ≤B EG some EG induced by the continu-
ous action of a Polish group on a Polish space;
or

2. E1 ≤B E?

In other words, is E1 the only obstruction to
“classification” or “reduction” to a Polish group
action?

At present this is wide open.

The question has, however, been positively an-
swered by Slawomir Solecki in many special cases.
In particular, his penetrating structure theorem
for Polishable ideals proves it for equivalence re-
lations on 2N arising as the coset equivalence
relation of some Borel ideal.
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6 Dichotomy theorems for classification by countable structures

Definition An equivalence relation E on a Pol-
ish space X is classifiable by countable struc-
tures if there is a countable language L and a
Borel function

f : X → Mod(L)

such that for all x1, x2 ∈ X

x1Ex2 ⇔ f (x1) ∼= f (x2).

This notion of classifiability has been subject
to close scrutiny, in part since it is so natural
from the perspective of a logician.5

It might also provide a template of what we
could hope to achieve with other notions of clas-
sifiability, where some kind of structure theo-
rems can be proved without appeal to a Har-
rington, Kechris, Louveau type dichotomy the-
orem.

5In fact a Borel equivalence relation E will be L(R) classifiable by countable structures if and only if |X/E|L(R) ≤ |HC| –
classifiability in this sense amounting to reducible to the hereditarily countable sets
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Theorem 6.1 (Farah ) There is a family of
continuum many Borel equivalence relations,
(Er)r∈R, such that:

1. each Er is induced by the continuous ac-
tion of an abelian Polish group on a Polish
space; and

2. no Er is classifiable by countable struc-
tures;

3. for r "= s the equivalence relations are in-
comparable with respect to Borel reducibil-
ity;

4. if E <B Er, any r, then E is essentially
countable, and hence classifiable by count-
able structures.

This says that there is no single canonical ob-
struction to be classifiable by countable in the
way we find E0 as a canonical obstruction to
smoothness.
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Definition Let G be a Polish group acting con-
tinuously on a Polish space X . For V an open
neighborhood of 1G, U an open set containing
x, we let

O(x, U, V ),

the U-V -local orbit, be the set of all x̂ ∈ [x]G
such that there is a finite sequence

(xi)i≤k ⊂ U

such that
x0 = x, xk = x̂,

and each
xi+1 ∈ V · xi.

Definition Let G be a Polish group acting con-
tinuously on a Polish space X . The action is
said to be turbulent if:

1. every orbit is dense; and

2. every orbit is meager; and

3. for x ∈ X , the local orbits of x are all some-
where dense.
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Farah’s theorem tells us we can not find even
finitely many Borel equivalence relations which
are canonical obstructions for classification by
countable structures.

Theorem 6.2 (Hjorth) Let G be a Polish group
acting continuously on a Polish space X with
induced orbit equivalence relation EX

G . As-

sume EX
G is Borel.

Then exactly one of:

1. EX
G is classifiable by countable structures;

or

2. G acts turbulently on some Polish space Y
and

EY
G ≤B EX

G .

There are in fact cases where one can rule out
the existence of turbulent actions by a group,
and thus show all the orbit equivalence relations
induced by a certain Polish group must be clas-
sifiable by countable structures.
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Theorem 6.3 Let G be a Polish group act-
ing continuously on a Polish space X with
induced orbit equivalence relation EX

G . As-

sume EX
G is Borel.

Then exactly one of:

1. EX
G is smooth; or

2. G acts continuously on a Polish space Y
with all orbits dense and meager and

EY
G ≤B EX

G .

Definition If G is a Polish group acting on a
Polish space X , we call X stormy if for every
nonempty open V ⊆ G and x ∈ X the map

V → [x]G

g %→ g · x

is not an open map.

In a manner parallel to the theory of turbu-
lence stormy provides the obstruction for being
essentially countable.
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7 The wish list

Question Let E be a Borel equivalence rela-
tion.

Must we have one of:

1. E ≤B EG for some EG arising as the orbit
equivalence relation of a Polish group acting
continuously on a Polish space; or

2. E1 ≤B E?

More generally, if we could establish that there
is some analysis of when an equivalence relation
is Borel reducible to a Polish group action, then
we could lever the theorems regarding turbu-
lence and stormy actions to gain a general un-
derstanding of when a Borel equivalence relation
admits classification by countable structures or
is essentially countable.
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Question Let EG arise from the continuous
action of an abelian Polish group on a Polish
space. Let E ≤B EG be a Borel equivalence
relation with countable classes.

Must we then have E ≤B E0?

If so, then Farah’s earlier examples would ob-
tain continuum many immediate successors to
E0 in the ≤B ordering.

Other work of Farah would obtain Borel equiv-
alence relations which are above E0 but have no
immediate successor to E0 below.
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Is there a kind of generalized dichotomy theo-
rem for hyperfiniteness?

Most optimistically:

Question Let E be a countable Borel equiva-
lence relation. Must we have either:

1. E ≤B E0; or

2. there is a free measure preserving action of
F2 on a standard Borel probability space such
that EF2

≤B E?

It is known that no such EF2
is Borel reducible

to E0.
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This seems wildly optimistic at present, and
perhaps it would be less rash to ask it only in
the case that E is treeable, but it would in par-
ticular have as one of its consequences a positive
answer to the following:

Question Let G be a countable amenable6 group.
Suppose G acts in a Borel manner on a standard
Borel space X .

Must we have EG ≤B E0?

The closest result to this is given by a startlingly
original combinatorial argument due to Su Gao
and Steve Jackson who establish a positive an-
swer in the case G is abelian.

There are no known techniques, or even hints
at ideas, which could provide a counterexample
to the above question.

6Amenability can be characterized as the statement that for all F ⊂ G finite, ε > 0, there is some A ⊂ G finite with

|A∆g · A|

|A|

all g ∈ F .
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All known proofs that an equivalence relation
is not reducible to E0 rely on measure theory,
and it follows from Connes, Feldman, Weiss that
any such EG must be Borel reducible to E0 on
some conull set with respect to any Borel prob-
ability measure.

In fact:

Question Let E be a countable Borel equiv-
alence relation. Are measure theoretic reasons
the only obstruction to being Borel reducible
to E0?

For instance, if E is countable and not Borel
reducible to E0, must it be the case that there
is a Borel probability measure µ such that E|A
is not Borel reducible to E0 on any conull A?

Any counterexample would require the devel-
opment of fundamentally new ideas about how
to prove some equivalence relations are not ≤B
E0.
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